Feature Matching in Model-Based
Software Engineering

Alar Raabe

Tallinn Technical University

Copyright © Alar Raabe 20(

contents

* [ntroduction

» Usage of models in software engineering
* Domalin analysis

= Feature matching

» Related work

= Conclusions

Copyright © Alar Raabe 20(

19 NA DNNA N

| ntroduction

* Today's business
 More dependent on software
« Constantly changing

» Requirements for business information systems
e Rapid delivery of initial results
« Effortless change during the life-cycle

* Independence of business know-how from information
technology know-how

« Minimal cost (acquisition and ownership)

= Context of given research

* |nsurance software product-line architecture, tools and

method for producing product-line members
Copyright © Alar Raabe 20(

19 NA DNNA n

USage O moaels In software
engineering

= For documentation

* Analysis N
o Design AN - «uses» %_}‘/_/7
e Implementation

= As source artefacts (in model-based methods)

e Results of
— analysis — problem statement
— design | implementation — specification of solution

e Sources for e N
— compilation | generation Sl) Vo |
— interpretation | execution [/

S —

Copyright © Alar Raabe 20(

19 NA DNNA N

IVIOA€el-Dased Sortware engineering
methods

= Methods where models are main artefacts
(some, or all other artefacts are derived from them)

* Model-based approaches for

 Real-time and embedded systems

— Model-Integrated Computing (MIC) and model-based software
synthesis — (Vanderbilt Univ. (ISIS), 1993; Abbott et al., 1994)

— Model-based development — (Mellor, 1995)
e (Generative programming
— GenVoca — (Batory, 1992)

— Family-Oriented Abstraction, Specification, and Translation
(FAST) — (Weiss, 1996; AT&T, Lucent, 1999)

o Software system families (a.k.a. product-lines)
— Model-Based Software Engineering (MBSE) — (SEI, 1993)

» |ntegration and interoperability
— Model-Driven Architecture (MDA) — (OMG, 2001c)opynght © Alar Raabe 20

19 NA DNNA =

Traditional MBSE approach (1)

-~ Problem domain
knowledge

Analyst

/

_—
System requirements

19 NA DNNA

]

Solution domain

knowledge

—

AN
Analysis Model

]

> >

Transformation
Rules

Designers

PAN
Design Model
AN
«transformatic
AN

Implementation Model
(Concrete Software)

Copyright © Alar Raabe 20(

Qo

Traditional MBSE approach (2)

Solution domain
knowledge

]
% Transformation

VAN

-~ Problem domain

knowledge Rules
Designer
YAN YAN
> Analysis Model . Implementation Model
Analyst «transformation» (Concrete Software)

/

System requirements

_—

Copyright © Alar Raabe 20(

19 NA DNNA -7

Proposed M BSE approach

~— Solution domain
knowledge

\

Analyst

Architect

]

AN

——=> Solution Domain]

Analysis Model

VAN

_— Transformation

—| % Rules

AN

— Problem domain
knowledge

Problem Domain
Analysis Model

Analysts —| Z% —|

AN AN

Analysis Model . Implementation Model
«transformation»
(Concrete Software)

_—
System requirements

Copyright © Alar Raabe 20(

19 NA DNNA (@)

Domain analysis

= Domain

« an area of knowledge or activity characterized by a set of
concepts and terminology understood by practitioners in that
area (UML)

= Domain Analysis

 Domain scoping — select and define domain of focus (context)

 Domain modelling — collect the relevant domain information
and integrate it into a coherent domain model

= Domain model
* A body of knowledge in a given domain represented in a given
modelling language
— Scope (boundary conditions of the domain)
— Domain knowledge (elements that constitute the domain)
— Generic and specific features of elements and configurations
— Functionality and behaviour Copyright © Alar Raabe 20

19 NA DNNA 0O

Domain analysis methods

= Domain analysis methods
 Language based
e Algebraic (formal)
e Object-oriented
e Aspect-oriented
e Feature-oriented
« Combined approaches - feature-oriented + ...

= Domain analysis methods based on features
« Feature-Oriented Domain Analysis (FODA) — SEI
o Feature-Oriented Reuse Method (FORM) — K. Kang

« Domain Engineering Method for Reusable Algorithmic
Libraries (DEMRAL) — Czarnecki, Eisenecker

* ... Copyright © Alar Raabe 20(

19 NA DNNA 1N

Feature modelling

* Feature modelling (a.k.a feature analysis)

e Is the activity of modelling the common and the variable
properties of concepts and their interdependencies

* |n feature modelling

« Concepts are any elements and structures of the domain of
Interest

o Features are qualitative properties of concepts

 Feature model represents the common and variable features
of concept instances and the dependencies between the
variable features

« Feature model consists of a feature diagram and additional
Information

Copyright © Alar Raabe 20(

19 NA DNNA 11

Feature diagram

= Tree-like diagram where
 The root node represents a concept, and
* Other nodes represent features

= Feature types /\

« Mandatory features (fy, f,, fz, f5)

« Optional features (f;, f,)
 Alternative features (fg, fg)) ; ,A’_
f3 f4 f5 f6
» Or-features (f;, fg, fy) /T\
= Constraints between features . .

« Composition rules (requires, excludes, ...) 7
Copyright © Alar Raabe 20(

19 NA DNNA 19

Feature types

= FODA feature types
« Context features — performance, synchronization, ...
« Operational features — application functions
* Representation features — visualization, externalization, ...

= FORM feature types

Capabilities

Operating environment

Domain technologies

Implementation techniques (domain independent)

= Only some of the features depend on problem domain

Copyright © Alar Raabe 20(

19 NA DNNA 19

EXample proobiem aomaln model
(Insurance)

Interest 1 *
«Dependent» -
Jo..*
1
< 0.*
Party 1% O+ Policy 1 1+ Cover
«Independent» ” - «Independent» H «Dependent»
0..*
services
1
Agent Renewal
«Independent» o «Process»

Copyright © Alar Raabe 20(

19 NA DNNA 1A

EXampie prooiem aoman moadel —
features independent of domain

= Concept “Policy” — independent business object

« Features (domain independent)
— Has identity
— Independent
— Has state
— Persistent - Storable, Searchable
— Viewable - Modifiable

= Concept “Renewal” — business process

« Features (domain independent)
— No identity
— No state
— Transient
— Business behavior = Asynchronous

Copyright © Alar Raabe 20(

19 NA DNNA 1=

EXample Solution aomaln moae
(J2EE + Struts + RDB)

Action «USES Session Bean
«Stateless» «Dependent»
«uses» 0 * Stored Proc.
\ 1/ - «Stateless»
\/ : O*
Form Bean Enterprise Bean ”
«Dependent» :; «Abstract» 0.*
1 * Java Bean
«Dependent»
// \\
«uses»
JSP Page Entity Bean 0.* 1 * Table
«Independent» «Independent» ” - «Independent»

Copyright © Alar Raabe 20(

19 NA DNNA 1R

EXampie SoluUtion aoman model —
features independent of domain

= Concept “Entity Bean”

« Features (independent of domain)
— ldentity
— State
— Persistent - Storable, Searchable
— Behavior

= Concept “Session Bean”

« Features (independent of domain)
— No identity
— State is optional
— Transient

— Behavior
Copyright © Alar Raabe 20(

19 NA DNNA 17

Configurations

= Configuration

» A set of concepts collectively providing required set of
features

« Feature set of configuration might be larger than sum of
feature sets of all the concepts in the configuration

= Configurations of solution domain are identified during the
solution domain analysis

Copyright © Alar Raabe 20(

19 NA DNNA 10

EXampie SoluUtion aoman model —
features of configurations

= Configuration
{*JSP Page”, “Form Bean”, “Action”, “Entity Bean”}

» Features (independent of domain)
— ldentity
— State
— Persistent - Storable, Searchable
— Behavior
— Viewable - Modifiable

= Configuration
{*JSP Page”, “form Bean”, “Action”, “Session Bean”}
« Features (independent of domain)
— No identity
— State is optional

— Transient Copyright © Alar Raabe 20!
19 AA AN — Rehavior 10

contents

» Feature matching
« Common feature space
« Solution domain selection
« Implementation synthesis
« Strategies for feature matching

Copyright © Alar Raabe 20(

19 NA DNNA N

Solution domain
knowledge

]

S

Analyst

Problem domain
knowledge

Analysts

/

HeaLture matcning In moaei-pnased
software devel opment

System requirements

19 NA DNNA

PAN
Solution Domain —|
Analysis Model ~

Rl Transformation
—| Matching Rules

PAN
Problem Domain
Analysis Model

PAN PAN
Analysis Model . Implementation Model

«transformation»

(Concrete Software)

Copyright © Alar Raabe 20(

Common feature space

= Common features of concepts and configurations
(identified for business information systems)

e Functional features
— May have identity
— Independent | Dependent
— Stateless | Stateful
— Transient | Persistent - Storable, Searchable
— Viewable - Modifiable
— Business behavior > Asynchronous, Synchronous

 Non-functional features
— Efficiency - Speed, Space
— Scalability
— Modifiability

- Portablllty Copyright © Alar Raabe 20(

19 NA DNNA LU N

—eature diagram Ol
common features of a concept

Concept

|

Stateless Stateful Identity Externalisablel, =~ Behavior
./Q\ /\ A
Persistent Transient Viewable Storable Synchronous | | Asynchronous
Modifiable Searchable

19 NA

SNN A

Copyright © Alar Raabe 20(

N

S0IULION doMmaln and arcnitecture
salection

= Solution domain selection is based on the features offered
by solution domain configurations

» Selecting the suitable architecture style

e Based on functional features
— Persistence

e Based on non-functional features
— Scalability
— Modifiability
= Examples
« Data-entry application > Central Repository
e Signal processing application = Pipes and Filters
« Decision Support - Blackboard

Copyright © Alar Raabe 20(

19 NA DNNA 5N

ViappiNg to dirrerent
architecture styles

Possible Architecture Styles

Analysis
Model

Copyright © Alar Raabe 20(

19 NA DNNA Lo]

|mplementation synthesis

= Selection of solution domain elements and
configurations

* For every problem domain element a suitable
— solution domain element, or
— configuration (set of solution domain elements)

* |s added to the implementation

= Suitability of solution domain element is decided
by feature matching

Copyright © Alar Raabe 20(

19 NA DNNA Lo YAS

concept to

solution domain

\Y

isual Components

GUI Tier

N

on-visual Components “I

Client Tier

BusinessObject

attributel
attribute2
attribute3

Communication Tier

Communication
Components

method1l
method2
method3

Application Tier

Server Components

Data Tier

Data Access

Components

]
]
]

19 NA DNNA

Copyright © Alar Raabe 20(

=7

Feature matching

= Concept descriptions
« C=F={f}
- {C;,...,C}=FEF,E..EF,
= Mapping from problem to solution domain
- [:{C}® {C%}
= Generic case
- FPLE..EFP I FS,E...EFS_ P
{CP,...,CP}® {C>, ...,C>}
= Trivial case
« FPFI FSpb {CP}® {CS}
= Complex cases
« FPI FS,E ... EFS P {CP}® {CS,...,CS }
- FFLE...EFP | FSpP {CP,...,CP}® {CS}

Copyright © Alar Raabe 20(

19 NA DNNA 0

Strategies for feature matching

Alternatives
« FP1 FS, &FPI FS,
= Maximal additional features

o |FS\FPI<|FS,\FP| P {CP}® {C5,}
« FS,1 FS,&FS,\FP| FS,\FPb {CP}® {CS,}
= Minimal additional features
o |[FS\FPI<|FS,\FP| P {CP}® {C°>;}
« FS,1 FS,&FS \FP| FS,\FPb {CP}® {CS}}
= Optimal — cost function based
e cost(F>)) £ cost(F>,) b {CF} ® {C>,}
— where Cost function is based on non-functional features of C>

Copyright © Alar Raabe 20(

19 NA DNNA 0

Related work

= Mapping to a predefined architecture

 Mapping domain model to a generic design
— (A. S. Peterson, J. L. Stanley, SEI, 1994)

— Mapping domain analysis results (FODA or else) to predefined
architecture (OCA — Object Connection Architecture) by
architecture elements

e FORM Feature-Oriented Reuse Method
— (K. C. Kang, POSTECH, 1998)

— Mapping feature space (FODA result) to predefined artifact
space (architecture) by kinds of features

» Selection of architecture style

« Attribute-Based Architecture Styles (ABAS)
— (R. Kazman, L, Bass, et al., SEI, 1999)

— Selection of architecture style based on reasoning about quality
attributes Copyright © Alar Raabe 20

19 NA DNNA N

Conclusions

= Differences from other methods

o Separate step of solution domain analysis
— resulting reusable solution domain model

« Common feature space for problem and domain analysis

» Selection of solution domain and synthesis of implementation
based on feature matching

= Next steps

« Study of common feature space for problem and domain
analysis (e.g. consistency, completeness)
o Study of feature matching process
— Creation of configurations with unanticipated features

e Study of solution domain configurations (e.g. creation,
sufficient set, relationship to design patterns)

* Prototype implementation of feature matching algorithm
Copyright © Alar Raabe 20(

19 NA DNNA 1

Thank You

Questions?

Copyright © Alar Raabe 20(

Copyright © Alar Raabe 20(

19 NA DNNA "N

Models for domain analysis

= Traditional models

e Static structure
— Class structures
— Object structures

* Functionality
— Uses-cases
— Scenarios

 Interactions (behavior)
— Sequences
— Collaborations

= Feature model
 Functional features
 Non-functional features

Copyright © Alar Raabe 20(

19 NA DNNA LoV, |

\

Solution Domain \
Analysis /

Problem Domain \

Analysis

. N\ ~)
Solution Domain =7
/
/i
RN \
i \ \
N, \s
Problem Domain Y~~~ ,‘//
\\\:‘— /7—’///// //
=T
i
|
! «subset»
S [y
7 ™\ \
Vi \ \
- A ~y
Specific Problem Yy~~~ T//
S~ - ’-,-—_’//// //

Specific Problem \\\
Analysis /

19 NA DNNA

‘/_\.\

HeaLture matcning In moaei-pnased
software devel opment

Feature Model

PN

Feature Model

«instanceOf»

PN

Feature Model

]

System Model

—————— | ————
I I
‘/_\.\ ‘/_\.\
Problem Domain Solution Domain
Model Model
\/ \/
\ \
Y
_______ 59\\ N
> Feature Matching
~\‘ / /
________ >/ /
=7 Y.
______ | \I/
L—
Transformations
\ 1/
A ' \\
AN \;\ Syn'the5|s of b ~
—————— = 7 Specific System /’“““,—/ ‘
/
/ //

Specific Systel
Implementation

Copyright © Alar Raabe 20(

Lo) my

|mplementation synthesis

= Feature Analysis

* Problem domain feature analysis
— starting from implicit features (external features)

e Solution domain feature analysis
o System feature analysis — explicit features

= Common Feature space
 Normative set for implicit features
= Synthesis — transformation of business analysis
model into implementation model
« Selection of solution domain (architecture style)

e Selection of solution domain elements and
configurations (implementation)

Copyright © Alar Raabe 20(

19 NA DNNA Lo Y Aq

