
12.04.2004 1

Copyright © Alar Raabe 2004

Feature Matching in Model-Based
Software Engineering

Alar Raabe

Tallinn Technical University

12.04.2004 2

Copyright © Alar Raabe 2004

Contents

§ Introduction
§ Usage of models in software engineering
§ Domain analysis
§ Feature matching
§ Related work
§ Conclusions

12.04.2004 3

Copyright © Alar Raabe 2004

Introduction

§ Today's business
• More dependent on software
• Constantly changing

§ Requirements for business information systems
• Rapid delivery of initial results
• Effortless change during the life-cycle
• Independence of business know-how from information

technology know-how
• Minimal cost (acquisition and ownership)

§ Context of given research
• Insurance software product-line architecture, tools and

method for producing product-line members

12.04.2004 4

Copyright © Alar Raabe 2004

Usage of models in software
engineering
§ For documentation

• Analysis
• Design
• Implementation
• …

§ As source artefacts (in model-based methods)
• Results of

– analysis – problem statement
– design | implementation – specification of solution

• Sources for
– compilation | generation
– interpretation | execution

«uses»

12.04.2004 5

Copyright © Alar Raabe 2004

Model-based software engineering
methods
§ Methods where models are main artefacts

(some, or all other artefacts are derived from them)

§ Model-based approaches for
• Real-time and embedded systems

– Model-Integrated Computing (MIC) and model-based software
synthesis – (Vanderbilt Univ. (ISIS), 1993; Abbott et al., 1994)

– Model-based development – (Mellor, 1995)
• Generative programming

– GenVoca – (Batory, 1992)
– Family-Oriented Abstraction, Specification, and Translation

(FAST) – (Weiss, 1996; AT&T, Lucent, 1999)
• Software system families (a.k.a. product-lines)

– Model-Based Software Engineering (MBSE) – (SEI, 1993)
• Integration and interoperability

– Model-Driven Architecture (MDA) – (OMG, 2001)

12.04.2004 6

Copyright © Alar Raabe 2004

Traditional MBSE approach (1)

Analysis Model

Implementation Model
(Concrete Software)

«transformation»

Problem domain

System requirements

Analyst

knowledge
Design ModelSolution domain

Designers

knowledge

Transformation
Rules

12.04.2004 7

Copyright © Alar Raabe 2004

Traditional MBSE approach (2)

Analysis Model Implementation Model
(Concrete Software)

«transformation»

Problem domain

System requirements

Analyst

knowledge

Solution domain

Designer

knowledge

Transformation
Rules

12.04.2004 8

Copyright © Alar Raabe 2004

Proposed MBSE approach

Analysis Model Implementation Model
(Concrete Software)«transformation»

Problem domain

System requirements

Analysts

knowledge

Solution domain
knowledge

Transformation
Rules

Analyst Analysis Model

Analysis Model
Problem Domain

Solution Domain

?

Architect

12.04.2004 9

Copyright © Alar Raabe 2004

Domain analysis

§ Domain
• an area of knowledge or activity characterized by a set of

concepts and terminology understood by practitioners in that
area (UML)

§ Domain Analysis
• Domain scoping – select and define domain of focus (context)
• Domain modelling – collect the relevant domain information

and integrate it into a coherent domain model
§ Domain model

• A body of knowledge in a given domain represented in a given
modelling language

– Scope (boundary conditions of the domain)
– Domain knowledge (elements that constitute the domain)
– Generic and specific features of elements and configurations
– Functionality and behaviour

12.04.2004 10

Copyright © Alar Raabe 2004

Domain analysis methods

§ Domain analysis methods
• Language based
• Algebraic (formal)
• Object-oriented
• Aspect-oriented
• Feature-oriented
• Combined approaches à feature-oriented + …

§ Domain analysis methods based on features
• Feature-Oriented Domain Analysis (FODA) – SEI
• Feature-Oriented Reuse Method (FORM) – K. Kang
• Domain Engineering Method for Reusable Algorithmic

Libraries (DEMRAL) – Czarnecki, Eisenecker
• …

12.04.2004 11

Copyright © Alar Raabe 2004

Feature modelling

§ Feature modelling (a.k.a feature analysis)
• is the activity of modelling the common and the variable

properties of concepts and their interdependencies

§ In feature modelling
• Concepts are any elements and structures of the domain of

interest
• Features are qualitative properties of concepts
• Feature model represents the common and variable features

of concept instances and the dependencies between the
variable features

• Feature model consists of a feature diagram and additional
information

12.04.2004 12

Copyright © Alar Raabe 2004

Feature diagram

§ Tree-like diagram where
• The root node represents a concept, and
• Other nodes represent features

§ Feature types
• Mandatory features (f1, f2, f5, f6)
• Optional features (f3, f4)
• Alternative features (f5, f6)

• Or-features (f7, f8, f9)

§ Constraints between features
• Composition rules (requires, excludes, …)

C

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
9

f
8

12.04.2004 13

Copyright © Alar Raabe 2004

Feature types

§ FODA feature types
• Context features – performance, synchronization, …
• Operational features – application functions
• Representation features – visualization, externalization, …

§ FORM feature types
• Capabilities
• Operating environment
• Domain technologies
• Implementation techniques (domain independent)

§ Only some of the features depend on problem domain

12.04.2004 14

Copyright © Alar Raabe 2004

Example problem domain model
(Insurance)

Party
«Independent»

Policy
«Independent»

Agent
«Independent»

Cover
«Dependent»0..* 1..*1..* 1

0..*

1

Interest
«Dependent»

0..*

1

1..*

0..*

Renewal
«Process»

services

12.04.2004 15

Copyright © Alar Raabe 2004

Example problem domain model –
features independent of domain
§ Concept “Policy” – independent business object

• Features (domain independent)
– Has identity
– Independent
– Has state
– Persistent à Storable, Searchable
– Viewable àModifiable

§ Concept “Renewal” – business process
• Features (domain independent)

– No identity
– No state
– Transient
– Business behavior à Asynchronous

12.04.2004 16

Copyright © Alar Raabe 2004

Example solution domain model
(J2EE + Struts + RDB)

Enterprise Bean

Table
«Independent»

Entity Bean
«Independent»

Stored Proc.

1..*0..*

Session Bean
«Dependent»

Java Bean
«Dependent»

1..*

0..*

0..*

0..*

«Stateless»

Form Bean

Action

«Dependent»

JSP Page

«Stateless»

«Abstract»

«Independent»

«uses»

«uses»

«uses»

12.04.2004 17

Copyright © Alar Raabe 2004

Example solution domain model –
features independent of domain
§ Concept “Entity Bean”

• Features (independent of domain)
– Identity
– State
– Persistent à Storable, Searchable
– Behavior

§ Concept “Session Bean”
• Features (independent of domain)

– No identity
– State is optional
– Transient
– Behavior

12.04.2004 18

Copyright © Alar Raabe 2004

Configurations

§ Configuration
• A set of concepts collectively providing required set of

features
• Feature set of configuration might be larger than sum of

feature sets of all the concepts in the configuration

§ Configurations of solution domain are identified during the
solution domain analysis

12.04.2004 19

Copyright © Alar Raabe 2004

Example solution domain model –
features of configurations
§ Configuration

{“JSP Page”, “Form Bean”, “Action”, “Entity Bean”}
• Features (independent of domain)

– Identity
– State
– Persistent à Storable, Searchable
– Behavior
– Viewable àModifiable

§ Configuration
{“JSP Page”, “form Bean”, “Action”, “Session Bean”}

• Features (independent of domain)
– No identity
– State is optional
– Transient
– Behavior

12.04.2004 20

Copyright © Alar Raabe 2004

Contents

§ Introduction
§ Usage of models in software engineering
§ Domain analysis
§ Feature matching

• Common feature space
• Solution domain selection
• Implementation synthesis
• Strategies for feature matching

§ Related work
§ Conclusions

12.04.2004 21

Copyright © Alar Raabe 2004

Feature matching in model-based
software development

Analysis Model Implementation Model
(Concrete Software)«transformation»

Problem domain

System requirements

Analysts

knowledge

Solution domain
knowledge

Transformation
Rules

Analyst Analysis Model

Analysis Model
Problem Domain

Solution Domain

Feature

Matching

12.04.2004 22

Copyright © Alar Raabe 2004

Common feature space

§ Common features of concepts and configurations
(identified for business information systems)

• Functional features
– May have identity
– Independent | Dependent
– Stateless | Stateful
– Transient | Persistent à Storable, Searchable
– Viewable àModifiable
– Business behavior à Asynchronous, Synchronous
– …

• Non-functional features
– Efficiency à Speed, Space
– Scalability
– Modifiability
– Portability
– …

12.04.2004 23

Copyright © Alar Raabe 2004

Feature diagram of
common features of a concept

Concept

Stateless Stateful Identity Externalisable Behavior

Persistent Transient Viewable Storable

Modifiable Searchable

AsynchronousSynchronous

.

12.04.2004 24

Copyright © Alar Raabe 2004

Solution domain and architecture
selection
§ Solution domain selection is based on the features offered

by solution domain configurations
§ Selecting the suitable architecture style

• Based on functional features
– Persistence
– …

• Based on non-functional features
– Scalability
– Modifiability
– …

§ Examples
• Data-entry application à Central Repository
• Signal processing application à Pipes and Filters
• Decision Support à Blackboard

12.04.2004 25

Copyright © Alar Raabe 2004

Mapping to different
architecture styles

Analysis

Possible Architecture Styles

Model

Filters

Pipes

12.04.2004 26

Copyright © Alar Raabe 2004

Implementation synthesis

§ Selection of solution domain elements and
configurations
• For every problem domain element a suitable

– solution domain element, or
– configuration (set of solution domain elements)

• is added to the implementation
§ Suitability of solution domain element is decided

by feature matching

12.04.2004 27

Copyright © Alar Raabe 2004

Mapping of problem domain
concept to solution domain
configurations

BusinessObject

attribute3
attribute2
attribute1

method1
method2
method3

Data Tier

Application Tier

Client Tier

Communication Tier

GUI Tier
Visual Components

Non-visual Components

Communication

Server Components

Components

Data Access
Components

12.04.2004 28

Copyright © Alar Raabe 2004

Feature matching

§ Concept descriptions
• C = F = {fi}
• {C1 , … , Cn} = F ⊇ F1 ∪ … ∪ Fn

§ Mapping from problem to solution domain
• ƒ : {CP} → {CS}

§ Generic case
• FP

1 ∪ … ∪ FP
n ⊆ FS

1 ∪ … ∪ FS
m ⇒

{CP
1, … , CP

n} → {CS
1, … , CS

m}
§ Trivial case

• FP ⊆ FS ⇒ {CP} → {CS}
§ Complex cases

• FP ⊆ FS
1 ∪ … ∪ FS

m ⇒ {CP} → {CS
1, … , CS

m}
• FP

1 ∪ … ∪ FP
n ⊆ FS ⇒ {CP

1, … , CP
n} → {CS}

12.04.2004 29

Copyright © Alar Raabe 2004

Strategies for feature matching

§ Alternatives
• FP ⊆ FS

1 & FP ⊆ FS
2

§ Maximal additional features
• |FS

1 \ FP| < |FS
2 \ FP| ⇒ {CP} → {CS

2}
• FS

1 ⊆ FS
2 & FS

1 \ FP ⊆ FS
2 \ FP ⇒ {CP} → {CS

2}

§ Minimal additional features
• |FS

1 \ FP| < |FS
2 \ FP| ⇒ {CP} → {CS

1}
• FS

1 ⊆ FS
2 & FS

1 \ FP ⊆ FS
2 \ FP ⇒ {CP} → {CS

1}

§ Optimal – cost function based
• cost(FS

1) ≤ cost(FS
2) ⇒ {CP} → {CS

1}
– where Cost function is based on non-functional features of CS

i

12.04.2004 30

Copyright © Alar Raabe 2004

Related work

§ Mapping to a predefined architecture
• Mapping domain model to a generic design

– (A. S. Peterson, J. L. Stanley, SEI, 1994)
– Mapping domain analysis results (FODA or else) to predefined

architecture (OCA – Object Connection Architecture) by
architecture elements

• FORM Feature-Oriented Reuse Method
– (K. C. Kang, POSTECH, 1998)
– Mapping feature space (FODA result) to predefined artifact

space (architecture) by kinds of features

§ Selection of architecture style
• Attribute-Based Architecture Styles (ABAS)

– (R. Kazman, L, Bass, et al., SEI, 1999)
– Selection of architecture style based on reasoning about quality

attributes

12.04.2004 31

Copyright © Alar Raabe 2004

Conclusions

§ Differences from other methods
• Separate step of solution domain analysis

– resulting reusable solution domain model
• Common feature space for problem and domain analysis
• Selection of solution domain and synthesis of implementation

based on feature matching
§ Next steps

• Study of common feature space for problem and domain
analysis (e.g. consistency, completeness)

• Study of feature matching process
– Creation of configurations with unanticipated features

• Study of solution domain configurations (e.g. creation,
sufficient set, relationship to design patterns)

• Prototype implementation of feature matching algorithm

12.04.2004 32

Copyright © Alar Raabe 2004

Thank You

Questions?

12.04.2004 33

Copyright © Alar Raabe 2004

12.04.2004 34

Copyright © Alar Raabe 2004

Models for domain analysis

§ Traditional models
• Static structure

– Class structures
– Object structures

• Functionality
– Uses-cases
– Scenarios

• Interactions (behavior)
– Sequences
– Collaborations

§ Feature model
• Functional features
• Non-functional features

12.04.2004 35

Copyright © Alar Raabe 2004

Feature matching in model-based
software development

System Model

Solution Domain

«instanceOf»

Synthesis of
Specific System Specific System

Implementation

Solution Domain
Analysis

Problem Domain

Specific Problem

Problem Domain
Analysis

Specific Problem
Analysis

«subset»

Feature Model

Feature Model

Feature Model

Feature Matching

Transformations

Problem Domain
Model

Solution Domain
Model

12.04.2004 36

Copyright © Alar Raabe 2004

Implementation synthesis

§ Feature Analysis
• Problem domain feature analysis

– starting from implicit features (external features)
• Solution domain feature analysis
• System feature analysis – explicit features

§ Common Feature space
• Normative set for implicit features

§ Synthesis – transformation of business analysis
model into implementation model
• Selection of solution domain (architecture style)
• Selection of solution domain elements and

configurations (implementation)

