
Model-Driven
Development

Model-Driven Methods in
Software Engineering

Alar Raabe

7.12.08 Copyright © Alar Raabe 20082

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Generative Programming
• Domain Specific Languages
• Model-Driven Development Methods

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

7.12.08 Copyright © Alar Raabe 20083

Alar Raabe

• 30 years in IT
– held various roles from programmer to a software architect

• Last 15 years in insurance domain
– developed model-driven technology for insurance applications

product-line
• models
• method/process
• tools and platform framework

• Interests
– software engineering (tools and technologies)
– software architectures
– model-driven software development
– industry reference models (e.g. IBM IAA, IFW)
– domain specific languages

7.12.08 Copyright © Alar Raabe 20084

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Generative Programming
• Domain Specific Languages
• Model-Driven Development Methods

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

7.12.08 Copyright © Alar Raabe 20085

Common Language – some Definitions 1

• Abstraction
– a view of an object that focuses on the information relevant to a

particular purpose and ignores the remainder of the information
– the process of formulating a view

• Model
– a representation of a real world process, device, or concept
– a representation of something that suppresses certain aspects of

the modeled subject
– a semantically closed abstraction of a system, or a complete

description of a system, from a particular perspective
– structured information NOT A PICTURE!

• Metamodel
– a logical information model that specifies the modeling elements

used within another (or the same) modeling notation
– specification of the concepts, relationships and rules that are

used to define a methodology
– a model of models

7.12.08 Copyright © Alar Raabe 20086

Common Language – Some Definitions 2

• Model Transformations
– changing the form of the model while preserving semantics and

some desirable properties (like correctness)

• Model Refinements
– changing (enlarging) the content of the model – adding details

• Domain
– a problem space
– a distinct scope, within which common characteristics are

exhibited, common rules observed, and over which a distribution
transparency is preserved

– an area of knowledge or activity characterized by a set of
concepts and terminology understood by practitioners in that
area (UML)

• Domain Specific Language (DSL)
– language dedicated to a specific problem domain, problem

representation technique, and/or problem solution technique

7.12.08 Copyright © Alar Raabe 20087

How we did Business Yesterday

Customer

Business
Specialist

Agreement

Service

Reports

Service could not correspond to
what customer wanted as free form
agreement might be misunderstood
by both parties

Work is inefficient and manual – lot
of business specialists are needed
for producing service

7.12.08 Copyright © Alar Raabe 20088

How we do Business Today

Customer

Business
System

Formalized
Agreement

Service

Reports

Service corresponds better to what
customer wanted as formalized
agreement is easier to understood
by both parties

Work is efficient and can be
automated – few if any business
specialists are needed for producing
service

Agreement
Model

7.12.08 Copyright © Alar Raabe 20089

How we do Business Tomorrow

Customer

Business
System

Service

Reports

Consultant

Formalized
Agreement

If customer needs to
be educated for filling
the formalized
agreement –
consultants might be
needed

Agreement
Model

7.12.08 Copyright © Alar Raabe 200810

How we Develop Software Today

Business
Specialist

Specification

Documentation

Software
Specialist

Business
System

Business system could not
correspond to what business
specialist wanted as free form
specification might be
misunderstood by both parties

Work is inefficient and manual – lot
of software specialists are needed
for producing business systems

7.12.08 Copyright © Alar Raabe 200811

BusinessObject

attribute3
attribute2
attribute1

method1
method2
method3

Data Tier

Application Tier

Client Tier

Communication Tier

GUI Tier
Visual Components

Non-visual Components

Communication

Server Components

Components

Data Access
Components

Consistency of Implementation

Application Server Client

ViewsModel CacheModel

Service Server

Meta Data

Business Object

Dependent ObjectIndependent
Object

ReferenceValue

7.12.08 Copyright © Alar Raabe 200812

Mapping to Different Implementations

Analysis

Possible Architecture Styles

Model

Filters

Pipes

7.12.08 Copyright © Alar Raabe 200813

Problem

• Requirements for today's business information systems
– fast time-to-market – rapid delivery of initial results
– flexibility – effortless and cheap change during the life-cycle
– independence of business know-how from technology know-how
– minimal (acquisition and ownership) cost
– independence of technological platform

• Problem ⟶ Manual work
– communication errors (systematic defects)
– construction errors (random defects)
– insufficient scalability of development process (sourcing)
– difficult transfer of knowledge (continuity)
– low reuse of both analysis and construction results (high cost)
– long development time (low productivity)
– insufficient flexibilitty of systems (high cost of changes)

• Solution ⟶ Automation

7.12.08 Copyright © Alar Raabe 200814

If business specialist
needs to be educated
for filling the
formalized
specification – analyst
might be needed

Business system corresponds
better to what business specialist
wanted as formalized specification
is easier to understood by both
parties

Work is efficient and can be
automated – few if any software
specialists are needed for
producing business systems

How we should Develop Software

Business
Specialist

Formalized
Specification

Documentation

Software
Generator

Business
System

Software
Model

Software
Specialist

Analyst

7.12.08 Copyright © Alar Raabe 200815

Beginning (Excursion into the History)

• Programming Languages – to automate coding
– FORTRAN (1954)
– Lisp (1956)
– Algol

• Problem-Oriented Languages/Systems – to automate programming
– ICES (MIT 1961)

• COGO, STRUDL, BRIDGE, ...
– PRIZ

• Compiler Generators – generation of solution from model of problem
– Yacc/Lex (1979)

• Application Generators
– MetaTool & ... (Bell Labs 1988)
– GENOA

"What has been will be again,
 what has been done will be done again;
 there is nothing new under the sun."
 ­­ Ecclesiastes 1:9

7.12.08 Copyright © Alar Raabe 200816

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Generative Programming
• Domain Specific Languages
• Model-Driven Development Methods

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

7.12.08 Copyright © Alar Raabe 200817

Using Models in Software Development

• Models as Descriptions and Illustrations

• Software as Model – Direct Modeling

• Models as Primary Artifacts

Model

Model Generator

Model

Software

Software

Software

<<Describes>>
<<Uses>>

<<Implements>>

<<Creates>>

<<Uses>>

<<Creates>>

7.12.08 Copyright © Alar Raabe 200818

Direct Modeling

• History
– Structured Programming / Structured Design (Jackson 1975)

• Convergent Engineering
– structure of business and business software should converge
– flexibility and multiple usages of same software

• Domain-Driven Design

• Examples
– Modeling Programs – programs that directly model something

• Recursive Descent Parser
– Generative Programs – programs, which are models and

generate other programs

“program structure should correspond to the structure of the problem”

7.12.08 Copyright © Alar Raabe 200819

Person

Policy

Property

• Convergent engineering – construct business software as
a model of business (organization and processes) [Taylor]

– business and the supporting software can be designed together
– changes in business are easier – greater flexibility of software
– same software can be used to:

1) run the day-to-day business, and

2) plan (do “what-if” analysis)

Convergent Engineering

Copyright © Ala Raabe 200820

Business Software Layers

• Business rules and business processes
– Most volatile part of the software
– Depends on business context (e.g. product, task, user role, ...)

• Business logic (functionality) and business domain model
– More stable than business rules and business processes

• Base system(s)
– Base functionality

• rules, data inheritance, events &
notifications, relationships, queries &
navigation, transactions,
communications, persistence

– Interface to the external systems
– Interface to the supporting technology

Business Rules
Business Processes

Business
Domain Model

Base System

V
ol

at
ili

ty

7.12.08 Copyright © Alar Raabe 200821

Domain-Driven Design

• Domain-Driven Design – a way of thinking and a set of
priorities, for accelerating software projects, which deal
with complicated domains [Evans]

– the primary focus should be on the domain and domain logic
– complex domain designs should be based on a model

• Some techniques an practices of Domain-Driven Design
• declarative design
• intention revealing interfaces (fluent interfaces)
• side-effect-free functions
• assertions (explicit constraints)
• conceptual contours (modules)
• standalone classes (low coupling)
• closure of operations (for value objects)
• bounded context (explicit context)
• context map (connecting models)
• shared kernel (common subset of models)
• anticorruption layer (interface between models)

7.12.08 Copyright © Alar Raabe 200822

Relationships of Domain-Models

Executable
Domain Model

User Interface Model
(WUI)

User Interface Model
(GUI/RIA)

Storage Model
(RDBMS)

External Model
(XML)

Other Domain Model

Mapping 1

Mapping 2

Mapping 4

Mapping 5

Mapping 3

7.12.08 Copyright © Alar Raabe 200823

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Generative Programming
• Domain Specific Languages
• Model-Driven Development Methods

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

7.12.08 Copyright © Alar Raabe 200824

Models as Primary Artifacts

Templates

Solution Model Generators

Architecture
Model

Manually
Written Code

Software

Generated
Code

BuilderConfiguration

Documents

7.12.08 Copyright © Alar Raabe 200825

Model-Based Software Development

• Real-time and embedded systems
– Model-Integrated Computing (MIC) and model-based software

synthesis – (Vanderbilt Univ. (ISIS), 1993; Abbott et al., 1994)
– Model-based development – (Mellor, 1995)

• Generative programming
– GenVoca – (Batory, 1992)
– Family-Oriented Abstraction, Specification, and Translation

(FAST) – (Weiss, 1996; AT&T, Lucent, 1999)

• Software system families (a.k.a. product-lines)
– Model-Based Software Engineering (MBSE) – (SEI, 1993)

• Integration and interoperability
– Model-Driven Architecture (MDA) – (OMG, 2001)

7.12.08 Copyright © Alar Raabe 200826

Generative Programming

Configuration knowledge
●illegal feature combinations
●default settings
●default dependencies
●construction rules
●optimizations

Problem Space
●domain specific
concepts
●features

Generator
Reflection

Components +
System Family
Architecture

Domain Specific
Language (DSL)

Solution Space
●elementary
components
●maximum
combinability
●minimum
redundancy

7.12.08 Copyright © Alar Raabe 200827

Generative Programming Technologies

Configuration knowledge
●illegal feature combinations
●default settings
●default dependencies
●construction rules
●optimizations

Problem Space
●domain specific
concepts
●features

Generator Technologies
●simple traversal
●templates and frames
●transformation systems
●languages with meta-
programming support
●extensible programming
systems

Component Technologies
●generic components
●component models
●AOP approaches

DSL Technologies
●programming language
●extensible languages
●textual languages
●graphical languages
●interactive wizards
●any mixture of above

Solution Space
●elementary
components
●maximum
combinability
●minimum
redundancy

7.12.08 Copyright © Alar Raabe 200828

Generator Technologies

• Model traversal

• Templates and frames
– text with meta-instructions (referencing model)

• retrieval of information from domain/problem model
• conditional configuration of output

– JSP, XSL, Velocity

• Transformation systems
– operate on abstract syntax trees

• rewrite rules
• transformation procedures

– DMS, XT, QVT

• Languages with meta-programming support
– template meta-programming in C++

7.12.08 Copyright © Alar Raabe 200829

Domain Specific Languages

• Domain-Specific Languages (DSLs) – customized
languages that provide a high-level of abstraction for
specifying a problem concept in a particular domain

• Defining DSL
– concrete syntax

• specific representation of a DSL in a human-usable form
– style: declarative | imperative
– representation: textual, graphical, table, form(wizard), ...

– abstract syntax
• elements + relationships of a domain without representation

consideration

– semantics
• the meaning of the phrases and sentences that the domain expert

may express
– static semantics: typing rules, truth value
– dynamic semantics: evaluation rules, change in context
– defined: formally | informally (interpreters, generators, transformers, ...)

7.12.08 Copyright © Alar Raabe 200830

DSL Technologies

• Internal DSLs
– Built-in features of programming languages

• C++ templates
• Lisp Macros

– Extendible languages
• XML, Seed7
• Ruby, Groovy, JavaScript, ...

– Well-Designed APIs

• External DSLs
– Textual languages

– Graphical languages
• UML, MetaCASE

– Interactive wizards

Don't be too Clever!

7.12.08 Copyright © Alar Raabe 200831

DSL Example
1

• Ojay (JavaScript internal DSL)
...
// Define some validation rules

 form('signup')
 .requires('username') .toHaveLength({minimum: 6})
 .requires('email') .toMatch(EMAIL_FORMAT, 'must be a valid email address')
 .expects('email_conf') .toConfirm('email')
 .expects('title') .toBeOneOf(['Mr', 'Mrs', 'Miss'])
 .requires('dob', 'Birth date').toMatch(/^\d{4}\D*\d{2}\D*\d{2}$/)
 .requires('tickets') .toHaveValue({maximum: 12})
 .requires('phone')
 .requires('accept', 'Terms and conditions').toBeChecked('must be accepted');
...

7.12.08 Copyright © Alar Raabe 200832

Compiler

DSL Implementation
1

Abstract Syntax (AST)

DSL text Parse Generate Code

• Compiler-Based

Abstract
Representation

Editable, Storable
Representation

Executable
Representation

7.12.08 Copyright © Alar Raabe 200833

DSL Example
2

• Simple External DSL (yacc)

• Example

...
list: /*empty */ | list stat '\n' | list error '\n' { yyerrok; } ;
stat: expr { printf("%d\n",$1); } | LETTER '=' expr { regs[$1] = $3; } ;
expr: '(' expr ')' { $$ = $2; } |
 expr '*' expr { $$ = $1 * $3; } | expr '/' expr { $$ = $1 / $3; } |
 expr '%' expr { $$ = $1 % $3; } |
 expr '+' expr { $$ = $1 + $3; } | expr '-' expr { $$ = $1 - $3; } |
 expr '&' expr { $$ = $1 & $3; } | expr '|' expr { $$ = $1 | $3; } |
 '-' expr %prec UMINUS { $$ = -$2; } |
 LETTER { $$ = regs[$1]; } | number ;
number: DIGIT { $$ = $1; base = ($1==0) ? 8 : 10; } |
 number DIGIT { $$ = base * $1 + $2; } ;
...

...
a = 10
b = 5
a + 4 * (b - 3)
...

7.12.08 Copyright © Alar Raabe 200834

Language Workbench

DSL Implementation
2

Abstract Syntax (AST)

Form Editor

Generate Code

• Language Workbench

Abstract
Representation

Executable
Representation

Edit

Text Editor

Edit

Editable
Representations

Editable
Representations

Storable
Representation

7.12.08 Copyright © Alar Raabe 200835

DSL Example
3

• xText (oAW)

• Example

Entity :
 "entity" name=ID ("extends" superType=[Entity])?
 "{"
 (features+=Feature)*
 "}";
Feature :
 Attribute | Reference;
Attribute :
 type=ID name=ID ";";
Reference :
 "ref" (containment?"+")? type=ID name=ID ("<->" oppositeName=ID)? ";";

entity Customer {
 String name;
 String street;
 Integer age;
 Boolean isPremiumCustomer;
}

7.12.08 Copyright © Alar Raabe 200836

Model-Driven Software Development

Executable
Domain Model

User Interface Model
(WUI)

User Interface Model
(GUI/RIA)

Storage Model
(RDBMS)

External Model
(XML)

Other Domain Model

Mapping 1

Mapping 2

Mapping 4

Mapping 5

Mapping 3

Domain Model

GeneratorGenerator

7.12.08 Copyright © Alar Raabe 200837

Traditional MDSD Approach

Analysis Model Implementation Model
(Concrete Software)

«transformation»

Problem domain

System requirements

Analyst

knowledge

Solution domain

Designer

knowledge

Transformation
Rules

7.12.08 Copyright © Alar Raabe 200838

Extended MDSD Approach

Analysis Model Implementation Model
(Concrete Software)

«transformation»

Problem domain

System requirements

Analysts

knowledge

Solution domain
knowledge

Transformation
Rules

Analyst
Analysis Model

Analysis Model
Problem Domain

Solution Domain

Architect

7.12.08 Copyright © Alar Raabe 200839

• Models
– Analysis and design meta-models
– Reference models

• Architecture
– Architecture style
– Reference architecture

• Process
– Generation rules
– Process of application of generation rules

• Tools
– Model manipulation tools
– Generators

Four Components of MDSD

7.12.08 Copyright © Alar Raabe 200840

OMG MDA

PSM

(Platform
Specific Model)

Transformation
(QVT)

PIM

(Platform
Independent

Model)

Software
Transformation

(QVT)
Additional

Information
(Marks)

Additional
Information
(Mapping)

Transformation
(QVT)

CIM

(Computation
Independent

Model)

Additional
Information

Domain Model –
Model of Problem
(Requirements)

Technology Neutral Model
of Solution (Abstract

Implementation)

Model of Solution
for Specific
Technology

PM

(Platform Model)

Patterns

Pattern
Names

7.12.08 Copyright © Alar Raabe 200841

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Generative Programming
• Domain Specific Languages
• Model-Driven Development Methods

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

7.12.08 Copyright © Alar Raabe 200842

Model Management

• Relationships between Models
– correspondence mappings between models
– references to external models
– “inheritance” – extension of models

• Operations on Models
– editing models

• graphical model editors
• form-based model editors
• text-based model editors

– storing models
• repository
• source code control
• embedding into code

7.12.08 Copyright © Alar Raabe 200843

Need for Combination of Models

Financial Business
Domain

Insurance Business
Domain

Life Insurance
Domain

Property & Casualty
Insurance Domain

Domain
Banking Business

Unit-linked Life
Insurance Domain

Universal Life
Insurance Domain

Domain of Concrete
Insurance Company

. . .

. . .

Domain of Concrete
Insurance Company

7.12.08 Copyright © Alar Raabe 200844

Business SupportBusiness Services

Fu
nc

ti
on

al
it

y
U

se
r

In
te

rf
ac

e

Combine Domains for Specific System

Pr
oc

es
se

s
R

ul
es

C
al

cu
la

ti
on

s
R

ep
or

ti
ng

Pe
rs

is
te

nc
e

In
te

ra
ct

io
n

Financial Services

Banking Insurance

Customer Mgmt. Resource Mgmt.

Accounting Billing

7.12.08 Copyright © Alar Raabe 200845

Relationships between Periferal Models

Executable
Domain Model

User Interface Model
(WUI)

User Interface Model
(GUI/RIA)

Storage Model
(RDBMS)

External Model
(XML)

Other Domain Model

Mapping 1

Mapping 2

Mapping 4

Mapping 5

Mapping 3

Domain Model

Generator

7.12.08 Copyright © Alar Raabe 200846

Common Business

Model(s)

Common Insurance

Model(s)

Common Financial

Model(s)

Common Telecom

Model(s)

Life Insurance

Model(s)

P roperty & Casualty

Insurance Model(s)

Claim Handling

Model(s)

Common Banking

Model(s)

• Domain reference model
– developed during the

domain analysis
– represents formalized

knowledge about domain

• Domain models form a
(inheritance) hierarchy
– where models of more

specific domains inherit
from the models of more
generic domains

• Extendability of domain
model
– must be planned during the

development of domain
model

Relationships between Domain Models

7.12.08 Copyright © Alar Raabe 200847

Best Practices

• Domain-Driven Design
– Domain-Driven Development Best Practices
– Domain-Driven Design Patterns

• Model-Driven Software Development
– Model-Driven Software Development Approach
– Model-Driven Software Development Best Practices

7.12.08 Copyright © Alar Raabe 200848

Domain-Driven Design Best Practices
1

• Use the Domain Model as Ubiquitous Language

• Design Part of the System to Reflect Domain Model –
Avoid Divide between Analysis and Design

– Domain Model is Constrained to Support Efficient Implementation

• Express Domain Model in Code – Hands-On Modeling

• Building Blocks

7.12.08 Copyright © Alar Raabe 200849

Express Domain Model in Software

encapsulate with

MODEL-DRIVEN

DESIGN

express model with

isolate domain with

encapsulate with

ENTITIES

VALUE OBJ ECTS

LAYERED

ARCHITECTURE

AGGREGATES

REPOSITORIES

act as root of

SMART UI

X

FACTORIES

encapsulate with

express model with

encapsulate with

mutually exclusive
choices

access with

maintain integrity with

access withSERVICES

express model with

7.12.08 Copyright © Alar Raabe 200850

Domain-Driven Design Best Practices
2

• Express Model with Services, Entities and Value Objects

• Isolate Domain with Layered Architecture
– Presentation Layer
– Application Layer
– Domain Layer
– Infrastructure Layer

• Maintain Integrity with Aggregates

• Entities act as roots of Aggregates

• Access Entities and Aggregates with Repositories

• Encapsulate Value Objects with Aggregates

• Encapsulate Entities, Value Objects and Aggregates with
Factories

7.12.08 Copyright © Alar Raabe 200851

MDSD Best Practices 1

• Separate the Generated and Manually Created Code
– protected regions (this requires checking generated code into the

revision control system)
– separate directory (e.g. src-gen)
– language mechanisms (e.g. subclassing/inheritance,

wrapping/containment, aspects, ...)

• Don't Manage Generated Code in Revision Control System
– exception when using protected regions
– exception when generator can't be integrated with build

• Integrate the Generator/Generation into the Build Process
– generation phase must be added before the compilation phase

7.12.08 Copyright © Alar Raabe 200852

MDSD Best Practices 2

• Use the Native Techniques of Target Platform for
Separating Generated and Manually Created Code

– object languages
• subclassing/inheritance (e.g. 3 levels for framework, generated and

manual code)
• wrapping/containment (delegation)

– aspect languages
• aspects/pointcuts (weaving)

– procedural languages
• preprocessing (e.g. includes)
• libraries

• Generate Clean and Readable Code
– code is primarily meant for humans
– follow coding styles used for manually written code
– generate comments that identify generated code and describe

the used (parts of) source model
– use code formatter

7.12.08 Copyright © Alar Raabe 200853

Combining Generated and
Non-Generated Code

Generated Non-Generated GeneratedNon-Generated

Non-Generated

Generated Non-Generated

Generated

Non-Generated

Generated

Generated

Non-Generated

Generated

7.12.08 Copyright © Alar Raabe 200854

MDSD Best Practices 3

• Use the Compiler (to Guide the Developer)
– let compiler check the constraints for manually written code (e.g.

overriding of mandatory methods)
– generate dummy code as example for manually written code

• Use Meta-Model as Ubiquitous Language
– use consistent terminology that connects generated code with

other parts of project
– verify the adequacy of DSLs through constant usage of

metamodel concepts

• Develop DSLs Incrementally
– DSLs should be developed as understanding grows
– DSLs are public interfces – should be developed and evolved like

APIs
– provide facilities for migrating old models to new metamodel

(e.g. model transformation)

7.12.08 Copyright © Alar Raabe 200855

MDSD Best Practices 4

• Develop Model Validation (Iteratively)
– semantics cannot be represented by metamodel alone (it

describes only static aspects of model – structure)
– constraints representing semantics should be added

incrementally
– integrate model validation into build process

• Test the Generator(s) (using Reference Model)
– use reference (test) models as unit tests to test the generator
– generate unit tests for combination of generated and manually

created code

• Select Suitable Technology – Avoid too Complex Meta-
Models

– define core abstractions clearly and expandable
– models should be quickly editable
– turnaround (model ⟶ generate ⟶ execute) should be quick
– avoid overly complex metamodels (like UML)

7.12.08 Copyright © Alar Raabe 200856

MDSD Best Practices 5

• Encapsulate UML (and other Complex Meta-Models)
– transform complex metamodels into simpler metamodels

targetted for specific domains
– formulate domain specific constraints on simpler metamodels

• Use Graphical and Textual Syntax Correctly (to Support
Modeller)

– don't overburden model with details – use implicit knowledge
– compromise between compactness and comprehensiveness

• Use Configuration by Exception
– use defaults for normal configurations (e.g. only specify the

exceptions)
– remember, that defaults become the part of interface (API)

7.12.08 Copyright © Alar Raabe 200857

Configuration vs. Construction

Configuration
Parameters

Complexity
Flexibility

Simplicity
Guidance
Efficiency

Routine
Configuration

Creative
Construction

Property
Files

Wizards

Manual
Programming

FrameworksTabular
Configuration

Feature
Models

Graph-Like
Languages

7.12.08 Copyright © Alar Raabe 200858

MDSD Best Practices 6

• Teamwork Loves Textual DSLs
– use exclusive locking for graphical models
– if possible, use both textual and graphical DSL (both

representations of same model)

• Use Model Transformations to Reduce Complexity
– divide the step between source model and code into several

transformation steps to fight complexity

• Generate towards a Comprehensive Platform – Keep
Translation Steps as Small as Possible

– develop domain specific platforms to reduce the complexity of
generators

7.12.08 Copyright © Alar Raabe 200859

 Modularize Generator
Model

0
Transformation

1

Model
1

Transformation
n

Generated
Code

Model
n

Code Generation

...

7.12.08 Copyright © Alar Raabe 200860

Use Rich Domain-Specific Platform

Domain Model

Technical Software
Solution

Domain Model

Domain Specific
Software

Technical Software
Solution

Solution

Problem

7.12.08 Copyright © Alar Raabe 200861

MDSD Best Practices 7

• Many Small DSLs – Concentrate on the Task
– swiss army knife is nice as present, but specialised tools are used

for serious work
– divide et impera – models should be modular

• Don't Reverse Engineer – Model is Primary Artifact
– all changes should be done in model, and then all derived

artifacts should be regenerated

• Regenerate Frequently
– include generation into continuous build process
– frequent regeneration ensures compliance with model and

architectural constraints (embedded into generator)

7.12.08 Copyright © Alar Raabe 200862

Examples

• Example of Model-Driven Development in Insurance
– Once & Done – a model-driven technology for insurance systems

product-line

• Example of Model-Driven Development in Banking
– RISLA – a DSL for credit products
– MLFi – a DSL for financial instruments and contracts

7.12.08 Copyright © Alar Raabe 200863

Business Object
(Enterprise JavaBean)

Once & Done
(OD EJB Server)

OD-SE Repository

Code Generation +
Business Logic
Development

OD Process

• Beginning
• Anaysis

• Business Domain Analysis
• Modeling Domain Objects
• Modeling Insurance Products

• Design
• Refinement of Analysis Models
• Design of the Database Schema
• Design of the User Interface
• Design of the Printouts

• Implementation
• Generation of Code
• Implementation of Business Logic
• Installation of Business Objects

into the Base System

• Finalisation

7.12.08 Copyright © Alar Raabe 200864

Legacy Systems

Repository

Analysis

Rational Rose

Working System

Database
Code & Parameters

Overview of OD Software Process

7.12.08 Copyright © Alar Raabe 200865

Extending the Meta-model

OperationButton Field

Value

Control Group

Control Link

Template

View

Feature
Presents

Relationship

Value Set

Constant

Analysis Coefficient Rating Formula

Business Process

Condition

Validation Rule

Action

Authority Category

Group

User

Calculation Rule

Business Entity

0..* 1..*0..* 1..*

Presents
Source

Target

Extends

Rating Feature

Attribute

Entity 0..*

0..*

Relationship

7.12.08 Copyright © Alar Raabe 200866

Independent Dependent

Business Entity

P arty P olicy Claim Settlement

P erson Company P roces s

Issuance Acceptance Renewal Rating

Address Installment Coverage Base

Covered Loss Type Coverage Category

Risk Coverage

Insurance Domain Model

7.12.08 Copyright © Alar Raabe 200867

OperationButton Field

Value

Control Group

Control Link

Template

View

Feature
Presents

Relationship

Value Set

Constant

Analysis Coefficient Rating Formula

Business Process

Condition

Validation Rule

Action

Authority Category

Group

User

Calculation Rule

Business Entity

0..* 1..*0..* 1..*

Presents
Source

Target

Extends

Rating Feature

Attribute

Extended OOA/OOD Meta-Model

7.12.08 Copyright © Alar Raabe 200868

■ Exported files
➨ Entities, Attributes, DB Tables

■ Entity specific files
➨ Interface Definitions (.idl)
➨ Class Implementations (.cpp)
➨ Utility Macros

■ Module specific files
➨ Module Definition, Makefile, Module Initialization

■ System-wide files
➨ OD Metadata files
➨ POS Metadata files
➨ DB Tables Creation Script
➨ OD Desktop Metadata files
➨ Rating parameters

OD-SE
Lotus Notes

Extractor

Metadata
Database

ASCII
files

Generators

Code

Sample Generation Process (OD)

7.12.08 Copyright © Alar Raabe 200869

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ClassTemplate SYSTEM "class.dtd">
<ClassTemplate Type="Java">

package <PackageName Target="EJBServer"/>;
import javax.ejb.*;
<BasePackages>
import <PackageName Target="EJBServer"/>.*;
</BasePackages>

<Preserve>
// begin of user imports

// end of user imports
</Preserve>

...

Example of Generation Template

7.12.08 Copyright © Alar Raabe 200870

public class <Name/>Bean
 extends <MainParent/>Bean {
<Preserve>
 // -=-=- Begin of user code
 // -=-=- End of user code
</Preserve>

<Attributes>
 public <Type/> <Name/>;
</Attributes>
 protected javax.ejb.EntityContext ctx;
<Methods>
 public <Type/> <Name/>(<Args Separator=", "><Type/> <Name/></Args>)
 throws java.rmi.RemoteException {
<Preserve>
 // Begin of code for <ClassName/> method <Name/>
 <MethodDummyReturns/>
 // End of code for <ClassName/> method <Name/>
</Preserve>
 }
</Methods>
...

Example of Generation Template

7.12.08 Copyright © Alar Raabe 200871

<Methods Override="Yes">
 public <Type/> <Name/>(<Args Separator=", "><Type/> <Name/></Args>)
 throws java.rmi.RemoteException {
<Preserve>
 // Begin of code for <ClassName/> method <Name/>
 <MethReturnUnlessVoid/> super.<Name/>(<Args Separator=",
"><Name/></Args>);
 // End of code for <ClassName/> method <Name/>
</Preserve>
 }

</Methods>

<Methods Inherited="Interface">
 public <Type/> <Name/>(<Args Separator=", "><Type/> <Name/></Args>)
 throws java.rmi.RemoteException {
 <MethReturnUnlessVoid/> super_<OriginalClassName/>.<Name/>(
 <Args Separator=", "><Name/></Args>);
 }
</Methods>
...
</ClassTemplate>

Example of Generation Template

7.12.08 Copyright © Alar Raabe 200872

TestObject

/ExternalAttribute : String
NumberAttribute : Number
TestAttribute : String

RefreshExternal : void

Independent

...
Name : String
Type : Choice

...

History

...
EndDate : Date
StartDate : Date

...

Content of Repository

7.12.08 Copyright © Alar Raabe 200873

package istest.server.ejb;

import javax.ejb.*;

// begin of user imports
// end of user imports

public class ISDTestObjectBean
 extends ISDIndependentBean {
 // -=-=- Begin of user code
 // -=-=- End of user code

 public String extattribute;
 public String testattribute;
 public double numberattribute;
 protected javax.ejb.EntityContext ctx;
 public void CLRefExt()
 throws java.rmi.RemoteException {
 // Begin of code for ISDTestObject method CLRefExt
 // theDO.CLRefExt();
 // End of code for ISDTestObject method CLRefExt
 }
...

Extension Point

Extension Point

Extension Point

Result of Generation

7.12.08 Copyright © Alar Raabe 200874

Example of Using Once&Done

• “Gadget Insurance”
– Gadgets consist of Widgets
– Gadgets can be insured against Fire and Theft

• Analysis model of “Gadget Insurance”

• Extending insurance domain model with “Gadget
Insurance”

• “Gadget Insurance” product model

• Design model for “Gadget Insurance” policy management
system

7.12.08 Copyright © Alar Raabe 200875

Widget

Replacement

TheftCoverage

Renewal CostReplacement

FireCoverage

GadgetPolicy

GadgetGadgetCoverage

“Gadget Insurance” Analysis Model

7.12.08 Copyright © Alar Raabe 200876

Independent Dependent

Business Entity

Coverage Base

Insurable

GadgetPolicy

GadgetCoverage

Widget

TheftCoverage FireCoverage

Policy

ReplacementRisk Coverage

Covered Loss Type

Renewal Cost

Coverage Category

Gadget

“Gadget Insurance” Model as Extension
to Insurance Domain Model

7.12.08 Copyright © Alar Raabe 200877

Gadget Policy Template
: GadgetPolicy

Gadget Template
: Gadget

Gadet Coverage Template
: GadgetCoverage

Theft Coverage Template
: TheftCoverage

Replacement Template
: Replacement

“Gadget Insurance” Product Model

7.12.08 Copyright © Alar Raabe 200878

GadgetPage
<<View>>

WidgetsPage
<<View>>

ErrorPage
<<View>>

CoveragePage
<<View>>

Business Entity

InsurableNoteBook
<<View>>

Insurable

GadgetNoteBook
<<View>>

Gadget

NoteBook
<<View>>

NoteBookPage
<<View>>

WidgetPage
<<View>>

Widget WidgetNoteBook
<<View>>

“Gadget Insurance” Design Model

7.12.08 Copyright © Alar Raabe 200879

Once&Done – Results

• Reduction of development time
– standard functionality generated from model
– some parts of the model interpreted at run-time

• Quality of developed code
– generated code had hints for developers
– regeneration forced to conform to architecture

• Flexibility of resulting systems

– business people were able to maintain parameters

• Technology independence of domain knowledge
– easy transition from C/C++ client-server to Java based web-

application

7.12.08 Copyright © Alar Raabe 200880

Comparing Model-Driven Method with
Traditional

• Effort for First Iteration – Basically CRUD Application

• Manually coded Claims application
– Volume

• Domain Model: 30 entities, 30 relationships
• Functionality: 10 use-cases (CRUD excl.)
• User Interface: 34 screens

– Effort: ~800 man-days (~50 analysis, ~550 implementation)

• Generated Claims application
– Volume

• Domain Model: 20 entities, 45 relationships
• Functionality: 15 use-cases (CRUD excl.), 20 business rules
• User Interface: 25 screens

– Effort: ~130 man-days (~80 analysis, ~2 implementation)

• Generated Claims was regenerated on different platform

7.12.08 Copyright © Alar Raabe 200881

Comparing Model-Driven Method with
Traditional

Traditional

Model-Driven

Analysis

Testing

Implementation

7.12.08 Copyright © Alar Raabe 200882

Lessons Learned

 Modeling is hard work and requires domain knowledge

 Project budget structure changes when using generation

 Repository is good for concurrent work, analysis and
synthesis, model checking and transformations, but has
problems with versioning and version management

 Textual models can be versioned as code, but this is not
best for concurrent work

 Interpreters of meta-info (heavily parametric software
components) are very difficult to debug – here
generation/compilation is better

7.12.08 Copyright © Alar Raabe 200883

RISLA – Language for Product Models

• Started 1990 – CAP, MeesPierson, ING, CWI
• Describes interest rate products

– Characterised by cash-flows

• Generates
– Database
– User Interface
– Product Logic

• Example:
– Loan

product LOAN

declaration
 contract data
 PAMOUNT : amount %% Principal Amount
 STARTDATE : date %% Starting date
 MATURDATE : date %% Maturity data
 INTRATE : int-rate %% Interest rate
 RDMLIST := [] : cashflow-list %% List of redemptions.

 information
 PAF : cashflow-list %% Principal Amount Flow
 IAF : cashflow-list %% Interest Amount Flow

 registration
 %% Register one redemption.
 RDM(AMOUNT : amount, DATE : date)

...

7.12.08 Copyright © Alar Raabe 200884

RISLA – Result

RISLA
Product Definition

Data Structures
(VSAM)

Input Screens
(CICS)

Product Management
Routines – Logic

(Cobol)

RISLA
Compiler

• Success
– Business people use – appropriate level of abstraction
– Time to market decreased from 3 months to 3 weeks
– Library of 100 components and 50 products
– Survived merger – flexibility

7.12.08 Copyright © Alar Raabe 200885

Instrument Models in MLFi

• American Option

• Zero Coupon

american : (date * date * contract) -> contract
american(t1, t2, u) =

 anytime({[t1, t2]}, zero, u)

one : currency -> contract
(* if you acquire the contract (one k), then
 you acquire one unit of k. *)

scale : (observable * contract) -> contract
(* if you acquire scale(o, c), then you acquire
 c, but where all incoming and outgoing payments
 are multiplied by the value of o at acquisition
 date. *)

obs_from_float : float -> observable
(* obs_from_float k is an observable always equal to k *)

7.12.08 Copyright © Alar Raabe 200886

Contract Model in MLFi

• Custom-built Contracts
let option1 =

 let strike = cashflow(USD:2.00, 2001-12-27) in

 let option2 =

 let option3 =
 let t = 2001-12-18T15:00 in
 either
 ("--> GBP payment", cashflow(GBP:1.20, 2001-12-30))
 ("reinvest in EUR + receive cash later",
 (give(cashflow(EUR:1.00, t))) 'and' cashflow(EUR:3.20, 2001-12-29))
 t in

 either
 ("--> EUR payment", cashflow(EUR:2.20, 2001-12-28))
 ("wait for last option", option3)
 2001-12-11T15:00 in

 (either
 ("--> USD payment", cashflow(USD:1.95, 2001-12-29))
 ("wait for second option", option2)
 2001-12-04T15:00) 'and' (give (strike))

Generating Code for Valuation
MLFi Source

Code

Contract code

Process code

Contract code
other state

Register
Process code

MC
LR code

Dyn Prog
code

MonteCarlo
code

Model def..

Lattices, pde's,...Lattices, pde's,... MonteCarlo pricersMonteCarlo pricers

Syntax check,
error detection,
normalisation,... Pretty-Print in MLFi

correct code

Contract level optimisation,
dead contract elimation,

temporal reorganisation,...

Stochastic Processes
no more other types

Translate to process
primitives + basic
factors of model

Process level optimisations
loop fusions, algebraic
process equalities,...

7.12.08 Copyright © Alar Raabe 200888

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Generative Programming
• Domain Specific Languages
• Model-Driven Development Methods

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

7.12.08 Copyright © Alar Raabe 200889

Conclusions

• No Round-Trips
– when you are Model-Driven, models are primary artifacts

(models are your code)

• Model is Not the Picture
– model is a collection of structured information in the form, which

is best fore given Domain (pictures should be Model-Driven)

• Keep Focus, Don't Mix Domains
– to represent information about problems/solutions in different

Domains use several Models with different Meta-Models

• Let the Models drive the Analysis
– models are the ubiquitous language for stakeholders

• This is not a Religion
– use Model-Driven Approaches only where it makes sense and

brings value

7.12.08 Copyright © Alar Raabe 200890

References

• Some books to read
– Krzysztof Czarnecki and Ulrich W. Eisenecker, Generative

Programming - Methods, Tools, and Applications, 2000
• http://www.generaative-programming.org/

– Tom Stahl, Markus Völter , Model-Driven Software Development:
Technology, Engineering, Management, 2006

• http://www.voelter.de/publications/books-mdsd-en.html

• Some WWW sites to look
– OMG MDA

• http://www.omg.org/mda
– Eclipse Modeling Framework

• http://www.eclipse.org/modeling/emf/
– Others

• http://www.andromda.org/
• http://www.openarchitectureware.org/
• http://www.voelter.de/services/mdsd-tutorial.html
• http://www.martinfowler.com/bliki/dsl.html
• http://www.prakinf.tu-ilmenau.de/~czarn/gpsummerschool02/
• ...

http://www.generaative-programming.org/
http://www.voelter.de/publications/books-mdsd-en.html
http://www.omg.org/mda
http://www.eclipse.org/modeling/emf/
http://www.andromda.org/
http://www.openarchitectureware.org/
http://www.voelter.de/services/mdsd-tutorial.html
http://www.martinfowler.com/bliki/dsl.html
http://www.prakinf.tu-ilmenau.de/~czarn/gpsummerschool02/

7.12.08 Copyright © Alar Raabe 200891

Thank You!

7.12.08 Copyright © Alar Raabe 200892

Questions?

7.12.08 Copyright © Alar Raabe 200893

Domain analysis

• Domain
– an area of knowledge or activity characterized by a set of

concepts and terminology understood by practitioners in
that area (UML)

• Domain Analysis
– Domain scoping – select and define domain of focus

(context)
– Domain modelling – collect the relevant domain information

and integrate it into a coherent domain model
• Domain model

– A body of knowledge in a given domain represented in a
given modelling language

• Scope (boundary conditions of the domain)
• Domain knowledge (elements that constitute the domain)
• Generic and specific features of elements and configurations
• Functionality and behaviour

7.12.08 Copyright © Alar Raabe 200894

Domain analysis methods

• Domain analysis methods
– Language based
– Algebraic (formal)
– Object-oriented
– Aspect-oriented
– Feature-oriented
– Combined approaches  feature-oriented + …

• Domain analysis methods based on features
– Feature-Oriented Domain Analysis (FODA) – SEI
– Feature-Oriented Reuse Method (FORM) – K. Kang
– Domain Engineering Method for Reusable Algorithmic

Libraries (DEMRAL) – Czarnecki, Eisenecker
– …

7.12.08 Copyright © Alar Raabe 200895

Feature modelling

• Feature modelling (a.k.a feature analysis)
– is the activity of modelling the common and the variable

properties of concepts and their interdependencies

• In feature modelling
– Concepts are any elements and structures of the domain of

interest
– Features are qualitative properties of concepts
– Feature model represents the common and variable

features of concept instances and the dependencies
between the variable features

– Feature model consists of a feature diagram and
additional information

7.12.08 Copyright © Alar Raabe 200896

Feature diagram

• Tree-like diagram where
– The root node represents a concept, and
– Other nodes represent features

• Feature types
– Mandatory features (f1, f2, f5, f6)

– Optional features (f3, f4)

– Alternative features (f5, f6)

– Or-features (f7, f8, f9)

• Constraints between features
– Composition rules (requires, excludes, …)

C

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
9

f
8

7.12.08 Copyright © Alar Raabe 200897

Feature types

• FODA feature types
– Context features – performance, synchronization, …
– Operational features – application functions
– Representation features – visualization, externalization, …

• FORM feature types
– Capabilities
– Operating environment
– Domain technologies
– Implementation techniques (domain independent)

• Only some of the features depend on problem domain

7.12.08 Copyright © Alar Raabe 200898

Example problem domain model
(Insurance)

Party
«Independent»

Policy
«Independent»

Agent
«Independent»

Cover
«Dependent»

0..* 1..*1..* 1

0..*

1

Interest
«Dependent»

0..*

1

1..*

0..*

Renewal
«Process»

services

7.12.08 Copyright © Alar Raabe 200899

Example problem domain model –
features independent of domain

• Concept “Policy” – independent business object
– Features (domain independent)

• Has identity
• Independent
• Has state
• Persistent  Storable, Searchable
• Viewable  Modifiable

• Concept “Renewal” – business process
– Features (domain independent)

• No identity
• No state
• Transient
• Business behavior  Asynchronous

7.12.08 Copyright © Alar Raabe 2008100

Example solution domain model (J2EE +
Struts + RDB)

Enterprise Bean

Table
«Independent»

Entity Bean
«Independent»

Stored Proc.

1..*0..*

Session Bean
«Dependent»

Java Bean
«Dependent»

1..*

0..*

0..*

0..*

«Stateless»

Form Bean

Action

«Dependent»

JSP Page

«Stateless»

«Abstract»

«Independent»

«uses»

«uses»

«uses»

7.12.08 Copyright © Alar Raabe 2008101

Example solution domain model –
features independent of domain

• Concept “Entity Bean”
– Features (independent of domain)

• Identity
• State
• Persistent  Storable, Searchable
• Behavior

• Concept “Session Bean”
– Features (independent of domain)

• No identity
• State is optional
• Transient
• Behavior

7.12.08 Copyright © Alar Raabe 2008102

Configurations

• Configuration
– A set of concepts collectively providing required set of

features
– Feature set of configuration might be larger than sum of

feature sets of all the concepts in the configuration

• Configurations of solution domain are identified during
the solution domain analysis

7.12.08 Copyright © Alar Raabe 2008103

Example solution domain model –
features of configurations

• Configuration
{“JSP Page”, “Form Bean”, “Action”, “Entity Bean”}
– Features (independent of domain)

• Identity
• State
• Persistent  Storable, Searchable
• Behavior
• Viewable  Modifiable

• Configuration
{“JSP Page”, “Form Bean”, “Action”, “Session Bean”}
– Features (independent of domain)

• No identity
• Transient
• Behavior
• Viewable

7.12.08 Copyright © Alar Raabe 2008104

Feature matching in model-based
software development

Analysis Model Implementation Model
(Concrete Software)

«transformation»

Problem domain

System requirements

Analysts

knowledge

Solution domain
knowledge

Transformation
Rules

Analyst
Analysis Model

Analysis Model
Problem Domain

Solution Domain

Feature

Matching

7.12.08 Copyright © Alar Raabe 2008105

Common feature space

• Common features of concepts and configurations
(identified for business information systems)
– Functional features

• May have identity
• Independent | Dependent
• Stateless | Stateful
• Transient | Persistent  Storable, Searchable
• Viewable  Modifiable
• Business behavior  Asynchronous, Synchronous
• …

– Non-functional features
• Efficiency  Speed, Space
• Scalability
• Modifiability
• Portability
• …

7.12.08 Copyright © Alar Raabe 2008106

Feature diagram of
common features of a concept

Concept

Stateless Stateful Identity Externalisable Behavior

Persistent Transient Viewable Storable

Modifiable Searchable

AsynchronousSynchronous

.

7.12.08 Copyright © Alar Raabe 2008107

Solution domain and architecture
selection

• Solution domain selection is based on the features offered
by solution domain configurations

• Selecting the suitable architecture style
– Based on functional features

• Persistence
• …

– Based on non-functional features
• Scalability
• Modifiability
• …

• Examples
– Data-entry application  Central Repository
– Signal processing application  Pipes and Filters
– Decision Support  Blackboard

7.12.08 Copyright © Alar Raabe 2008108

Implementation synthesis

 Feature Analysis
• Problem domain feature analysis

• starting from implicit features (external features)

• Solution domain feature analysis
• System feature analysis – explicit features

 Common Feature space
• Normative set for implicit features

 Synthesis – transformation of business analysis model into
implementation model
• Selection of solution domain (architecture style)
• Selection of solution domain elements and configurations

(implementation)
• Decided by feature matching

7.12.08 Copyright © Alar Raabe 2008109

Example feature mapping
(Insurance  J2EE)

Party
«Independent»

Policy
«Independent»

Agent
«Independent»

Cover
«Dependent»0..* 1..*1..* 1

0..*

1

Interest
«Dependent»

0..*

1

1..*

0..*

Renewal
«Process»

services

Enterprise Bean

Table
«Independent»

Entity Bean
«Independent» 1..*0..*

Java Bean
«Dependent»1..*

0..*

Form Bean

Action

«Dependent»

JSP Page

«Stateless»

«Abstract»

«Independent»

«uses»

«uses»

«uses»

Enterprise Bean

Stored Proc.

Session Bean
«Dependent»

Java Bean
«Dependent»1..*

0..*

0..*

0..*

«Stateless»

Form Bean

Action

«Dependent»

JSP Page

«Stateless»

«Abstract»

«Independent»

«uses»

«uses»

«uses»

7.12.08 Copyright © Alar Raabe 2008110

Feature matching in model-based
software development

System Model

Solution Domain

«instanceOf»

Synthesis of
Specific System

Specific System
Implementation

Solution Domain
Analysis

Problem Domain

Specific Problem

Problem Domain
Analysis

Specific Problem
Analysis

«subset»

Feature Model

Feature Model

Feature Model

Feature Matching

Transformations

Problem Domain
Model

Solution Domain
Model

7.12.08 Copyright © Alar Raabe 2008111

Steps of Model-Oriented Software
Development

Problem Domain

Specific Problem System Model

Solution Domain

Architecture Style
«metamodel»

Problem Domain
«metamodel»

Metamodel

«instanceOf»

Solution Domain
Analysis

Problem Domain
Analysis

Specific Problem
Analysis

Transformation
«metamodel»

Domain Metamodel
Problem to Solution

Mapping Design

Synthesis Rules

«instanceOf»

«subset»

Architecture Model

«instanceOf»

Generic Solution
Design

Synthesis of
Specific System

Implementation
of Architecture

«instanceOf»

Architecture
Components

Specific System
Implementation

«uses»

Reference Model

7.12.08 Copyright © Alar Raabe 2008112

MDD vs. “normal” way

 Analysis phase takes some more time, as model has to be
developed to certain level before anything useful could be
generated

 First iteration of development takes no time – code is
generated – prototyping is extremely cheap and
prototypes could be used to verify the model (by
executing the business scenarios)

 With regular regeneration next iterations stay consistent
with model and avoid architecture “decay”

7.12.08 Copyright © Alar Raabe 2008113

Modeling Guidelines

 When combining metamodels – use
• Complex queries for selection of elements
• Massive renaming for name conflicts resolution
• Overriding, replacing and deferring of elements

 When creating reference models – support
model combinations via

• Role-Oriented modeling
• Clear identification of extension points
• Separation of variable parts
• Separation of functionality
• Grouping (clustering) of model elements

7.12.08 Copyright © Alar Raabe 2008114

Design Techniques

 Always have an escape plan

− Example of business rules
 simple parametric rule types
 simple declarative rule language
 dynamically bound code

− Example of UI screens
 generated screens
 painted screens

− Example of database interface
 automatic object-relational mapping
 dynamically bound mappers (externalizers/internalizers)

7.12.08 Copyright © Alar Raabe 2008115

Programming Techniques

 Declarative Programming

 Intention-Revealing (Fluent) Interfaces

 Regenerate often → allow only such customizations, that
follow the architecture conventions

− reverse engineering is one-time tool for legacy integration, not
for regular development

 Involve business people in development and maintenance
through the model manipulations

7.12.08 Copyright © Alar Raabe 2008116

Representations of Model

 Repository (RDBMS)

 Textual representation (XML)

 Code (e.g. Java + tags or annotations)

− Java annotations are restricted to interpretative model
(compilation could be achieved with generating code – “two
pass” execution)

