
Mallid tarkvara disainis (LAI8320)

Ülevaade

Disainimallide määratlus. Disainimallide esitusviisid, mallide keeled, erinevad tähistused. 
Disainimallide klassifikatsioon: loovad-, struktuuri- ja käitumismallid. Disainimallide kasutamine OO 
tarkvara disainis. Programm kui idee ülestähendus. Tarkvara arhitektuuride korduvkasutus. 
Raamistikud ja metamallid. Peamised probleemid korduvkasutatava OO tarkvara disainimisel. 
Disainimallide ja metamallide kasutamine keerukate raamistike disaini mõistmisel. Disainimallide 
rakendamine praktikas. Mallide avastamine olemasolevais rakendusis. Disainimallide kataloog: 
üldised-, hajatöötlus-, ärisüsteemide-, side- ja sündmuste haldamise disainimallid.

Sisukord

1. Disainimallide määratlus. ("Mis on üks disaini mall") 

1.1. Disainimallide osad:. 
a) probleem või teema,
b) lahendus,
c) järeldus.

2. Disainimallide esitusviisid. 

2.1. Alexander'i kuju.
2.2. Portland'i kuju.
2.3. Coad'i kuju.
2.4. Hüperklass.

3. Disainimallide klassifikatsioon. 

3.1. Loovad disainimallid.
3.2. Struktuuri disainimallid.
3.3. Käitumise disainimallid.

4. Disainimallide kasutamine objekt-orienteeritud tarkvara disainis. Programm kui idee esitus.
5. Korduvkasutatava tarkvara disainimise peamised probleemid.
6. Disainimallide rakendamine praktikas.
7. Raamistikud.
8. Disainimallide kataloog. 

8.1. Üldised disainimallid.
8.2. Disainimallid hajatöötluses.
8.3. Disainimallid ärisüsteemides.
8.4. Disainimallid sides.
8.5. Disainimallid sündmuste haldamises.

So the real work of any process of design lies in the task of making up the language, 
from which you can later generate the one particular design.

And, more subtly, we find also that different patterns in different languages have 
underlying similarities, which suggest that they can be reformulated to make them 



more general, and usable in a greater variety of cases.

C. Alexander, The Timeless Way of Building

1. Disainimallide määratlus

1.1. Disainimallid

Objekt-orienteeritud keeltes ja programmeerimissüsteemides on toimunud areng klassiteekidest 
(1970) erinevaid ülesandeid komplektselt lahendavateks raamistikeks (frameworks). See areng 
kulmineerub arhitektuurielementide korduvkasutamisega.
Klassiteekides sisalduvad objektid on korduvkasutamise suurem ühik, kui alamprogrammid ja 
funktsioonid tavalistes programmiteekides, aga nad ei tõsta oluliselt arhitektuuri elementide 
korduvkasutamise taset. Põhiprobleem on, et laialt kasutatava klassi skoop pole küllalt suur, et 
oluliselt vähendada käsitsi kirjutatavat koodi.

Disaini mall on korduv arhitektuuriline element, mis lahendab mingit disainiprobleemide hulka 
kindlas kontekstis. Disainimallid aitavad parendada tarkvara arendust esitades edukaid 
ekspertlahendusi süstemaatilisel ja kergeltkasutataval kujul.
Mallide klassifitseerimine osutub üha tähtsamaks mallide kataloogide kasvades ja 
tarkvaratööstuse küpsedes punktini, kus disainerid kasutavad mitmeid mallide katalooge (mallide 
keeli) üheskoos. Tänapäeval on mallide katalooge alates suhteliselt abstraktsetest arhitektuuri 
raamistike mallidest, disainimallideni ja konkreetsete idioomideni. Arhitektuuri raamistike mallid 
(nagu MVC) on tavaliselt sõltumatud rakendusvaldkonnast. Vastupidiselt idioomideni (nagu viidete 
loendamine), mis on sageli tugevalt seotud konkreetse programmeerimiskeelega. Disainimallid 
pole sama süstemaatilised kui arhitektuuri raamistikud, aga ka mitte nii seotud 
programmeerimiskeelega kui idioomid.

Tarkvarasüsteemi, eriti aga suuremõõtmelise tööstustarkavarasüsteemi ehitamine on keerukas 
protsess. Tuleb teha mitmeid disainiotsuseid: sisse tuua mitmeid komponente, tarkvara 
funktisonaalsus tuleb nende komponentidega siduda, nende vahelised suhted tuleb määratleda ja 
kogu arhitektuur peab vastama teatud mittefunktsionaalsetele nõuetele.
Mallid koosnevad ettevalmistatud disainistruktuuridest, mida saab kasutada ehituskividena 
tarkavaraarhitektuuri ehitamiseks.
Iga mall: 

• Annab ettemääratud skeemi mingi teatud struktuurse või funktsionaalse põhimõtte 
realiseerimiseks tarkvarasüsteemis, kirjeldades tema erinevaid osi ja nende koostegevust 
ning vastutusalasid. 

• Kirjeldab olemasolevat, järeleproovitud disaini kogemust. 
• Identifitseerib, nimetab, ja spetsifitseerib abstraktsioone, mis on klassidest ja isenditest 

kõrgemal. 
• Pakub ühist sõnastiku ja disainipõhimõtetest arusaamist. 
• Aitab tarkvara keerukust hallata. 
• On tarkvara arenduses taaskasutatav ehituskivi. 
• Võib olla kas rakendusvaldkonnast sõltumatu, või sõltuv. 
• Puudutab nii tarkvaradisaini funktsionaalseid kui mittefunktsionaalseid külgi.

1.2. Mallide süsteem



Mallide süsteem, mida saab kasutada suvalise soovitava tarkvara arhitektuuri ehitamiseks ja 
koostamiseks, koosneb paljudest erinevatest mallidest, mida kasutatakse paljudel erinevatel 
otstarvetel. Kuna sellise süsteemi eesmärgiks on ettemääratud omadustega tarkvarasüsteemide 
süstemaatiline väljatöötamine, ei piisa mallide lühikirjelduste loetelust, et süsteemi saaks 
effektiivselt kasutada.
Kasutuskõlblik mallide süsteem peab: 

• Toetama süsteemi arengut. Teatud mallid võivad muutuda süsteemi elutsükli jooksul, uusi 
malle võib lisanduda ja olemasolevad võivad kaduda. 

• Kirjeldama kõiki malle, mida ta sisaldab ühesugusel kujul. Need kirjeldused peavad 
puudutama kõiki aspekte, mis on tähtsad malli iseloomustamisel, detailne kirjeldus, 
realisatsioon, valik, ja võrdlused teiste mallidega. 

• Klassifitseerima malle, mida ta sisaldab, et juhatada mallide valikut konkreetse 
disainisituatsiooni jaoks. Selline klassifikatsioonisüsteem peab sisaldama kategooriaid 
kriteeriumite või disaini teemade kohta, mis mängivad tähtsat rolli tarkvara arenduses. 

• Vaatlema teemasid, mis puudutavad mallidest keerukate ja heterogeensete struktuuride 
ehitamist. Mitte igat malli ei saa effektiivselt koos kasutada mistahes teise süsteemis oleva 
malliga. Lisaks mõjutab see, kuidas malle on koos kasutatud tulemuse omadusi nagu 
taaskasutatavus või muudetavus.

2. Disainimallide esitusviisid

Üldjuhul on mallil neli olulist osa: 

• ·Nimi -- see on probleemi kirjelduse, lahenduse ja selle tagajärgede lühike (ühe-kahe 
sõnaline) iseloomustus. Malli nimi lisandub disaini-sõnastikule ja võimaldab rääkida, 
arutleda ja kirjutada mallist. 

• ·Probleem kirjeldab, kus/kunas malli rakendada. Ta selgitab probleemi ja selle konteksti, 
kirjeldades sümptomaatilisi klassi- või objektistruktuure. Mõnikord sisaldab probleem 
tingimusi, mille korral mall on rakendatav. 

• ·Lahendus kirjeldab elemente, mis moodustavad disaini, nende vahelisi suhteid, nende 
ülesandeid ja koostööd. Lahendus ei kirjelda konkreetset disaini või realisatsiooni, kuna 
malle võib rakendada mitmes situatsioonis. 

• ·Tagajärjed on malli rakendamise tulemused ja hind. Tagajärjed on sageli tähtsad disaini 
alternatiivide hindamisel.

2.1. Alexander'i kuju

Alexander eristas mallidel kolme vajaliku osa: 

• ·Kontekst: Mingi konkreetne korduv situatsioon 
• ·Probleem: Jõudude süsteem, mis eksisteerib antud kontekstis 
• ·Lahendus: Ruumiline konfiguratsioon, mis lubab diasineril probleemi lahendada

2.2. Gamma kuju

Erich Gamma'l on disainimallid (kasutab ka terminit mikro-arhitektuurid) kategoriseeritud 
(klassifitseeritud): 



• Loovad mallid 
• Struktuuri mallid 
• Käitumismallid

ja esitatud järgmisel kujul: 

Malli nimi ja Klassifikatsioon 
Malli nimi annab edasi malli olemust.

Eesmärk 
Lühike tekst, mis vastab küsimustele:
Mida antud mall teeb?
Mis on põhimõte või eesmärk?
Millist disaini küsimust või probleemi antud mall lahendab?

Alias 
Malli teised tuntud nimed (kui neid on)

Motivatsioon 
Stsenaarium, mis illustreerib disaini probleemi ja seda, kuidas malli klassi- ja 
objektistruktuurid lahendavad seda probleemi.

Rakendatavus 
Situatsioonide kirjeldus, kus antud malli saab rakendada. Millised on halva disaini 
näited, mida antud mall parandab ja kuidas neid situatsioone ära tunda.

Struktuur 
Mallis osalevate klasside graafiline esitus (OMT notatsioonis). Samuti interaktsiooni 
diagrammid, mis kirjeldavad meetodikutsete järjestust ja koostööd.

Osalejad 
Klassid ja objektid, mis disainis osalevad ning nende ülesanded.

Koostöö 
Kuidas osalejad üheskoos täidavad oma ülesandeid.

Tagajärjed 
Kuidas mall saavutab oma eesmärgid? Milline on malli kasutamise hind? Milliseid 
süsteemi struktuuri aspekte on võimalik sõltumatult varieerida?

Realisatsioon 
Millised ohud võivad olla seotud realiseerimisega ja milliseid tehnikaid tuleks 
kasutada? Kas ja millised on keelest sõltuvad küsimused?

Näitekood 
Koodi fragmendid, mis illustreerivad, kuidas malli võiks realiseerida C++ või 
Smalltalk'is.

Teada kasutused 
Antud malli näited tegelikes süsteemides (vähemalt kaks erinevatest valdkondadest 
pärit näidet).

Seotud mallid 
Millised disainimallid on antud malliga seotud? Millised on tähtsamad erinevused 
sarnastest mallidest? Milliseid teisi malle antud mall kasutab?

2.2. Portland'i kuju

Pattern Name: Malli nimi
Aliases: Aliases (or none) Malli teised nimed



Problem 

Antud malli poolt lahendatava probleemi kirjeldus. Probleem võib olla esitatud küsimusena

Context 

Probleemi konteksti kirjeldus

Forces 

Probleemi ja lahendust mõjutavate jõudude kirjeldus. See võib olla loetelu
° Esimene jõud
° Teine jõud
° ...

Solution 

Probleemi lahenduse kirjeldus

Resulting Context 

Lahenduse konteksti kirjeldus

Rationale 

Lahenduse taga oleva mõttekäigu selgitus

Known Uses 

Loetle, kus seda malli on kasutatud

Related Patterns 

Antud malliga seotud mallide loetelu või kirjeldus

Sketch 

Joonis ja joonise kirjeldus

Author(s): Autori nimi
Date: Kuupäev, näit. 3/1/96
Send email to author(s) 
Pattern Source: Näide: AG Communication Systems, Writers Workshop, etc. 

References 

Viidete nimestik

Keywords: Komadega eraldatud loetelu võtmesõnadest

mailto:delanod@agcs.com


Example 

Näide malli kasutamisest

2.3. Coad'i kuju

Coad'il on mallid stereotüüpsed objektide, vastutuste (responsibilities) ja interaktsioonide 
komplektid, mida võib korduvalt analoogiale põhinedes rakendada. Mallide isendid (instances) on 
objektmudelite ehituskivideks.
Malle võib kategoriseerida peredesse: 

• fundamentaalsed (fundamental) 
• transaktsioonid (transactions) 
• liitolemid (agregates) 
• vahendid (devices) 
• interaktsioonid (interactions) 
• kombinatsioonid (combinations)

Mallid on esitatud kujul: 

#number. "Nimi" tüüp kategooria

skeem (Coad'i notatsioon)

kirjeldus

Näide: 

#1. Mall "Kogum-Töötaja" (Collection-Worker)
fundamentaalne mall

• Kogum-Töötaja on objektmudeli fundamentaalne mall 
• Kõik teised objektimudeli mallid on antud malli variatsioonid 
• Tüüpilised objektide vahelised interaktsioonid:
howMany --> calcForMe
howMuch --> calcForMe
calcOverWorkers --> calcForMe
rankWorkers --> rateMe 



• Teisi märkusi
aboutMe -- aitab mõtelda, milliseid atribuute veel vaja on
calcForMe -- aitab mõtelda, milliseid konkreetseid arvutusi on vaja teostada
rankMe -- aitab mõtelda, milliseid järjestus- ja võrdlusteenuseid vaja oleks
rateMe -- aitab mõtelda, milliseid hinnanguteenuseid vaja oleks

Strateegia on tegevuste plaan, mis on ette nähtud teatud eesmärgi saavutamiseks.
Strateegiad jaotuvad nelja põhikategooriasse: 

• süsteemi eesmärkide ja omaduste identifitseerimine 
• objektide valimine 
• vastutuste kindlaksmääramine 
• dünaamika väljatöötamine stsenaariumite abil

Strateegiad on esitatud kujul: 

#number. "Nimi" tüüp kategooria

kirjeldus

Näide: 

#1. Strateegia "Neli Põhilist Tegevust, Neli Põhilist Komponenti"
peamised tegevused ja komponendid

• Organiseeri oma töö nelja põhitegevuse ja nelja põhikomonendi ümber 
• Neli põhitegevust: Identifitseeri eesmärgid (purpose) ja omadused (features), vali objektid, 

sea paika ülesanded (responsibilities), tööta stsenaariumeid kasutades välja dünaamika 
• Neli põhikomponenti: Probleemivaldkond, iniminteraktsioon, andmete haldamine, süsteemi 

interaktsioon

2.4. Hüperklass

Jiri Soukup leiab, et Gamma ja Coad'i poolt kirjeldatud mallide probleemiks on, et nad aitavad 
disainida tarkvara abstraktsel tasemel aga ei säili realisatsioonis (koodis). Lahenduseks pakub ta 
ühe spetsiifilise klassi -- malli klassi (pattern class) või hüperklassi lisamist disaini. See klass oleks 
sõber (friend) kõikide klassidega, mis moodustavad malli ja ta sisaldaks malli kogu liidest 
(rakenduse klassides poleks ühtegi malliga seotud meetodit).
Hüperklass esitab abstraktsemaid mõisteid, kui tavaline klass tema jaoks on mallid 
isenditeks/objektideks.

3. Disainimallide klassifikatsioon

Alexander esitab oma töös mallide klassifikatsiooni aga mitte nende vaheliste suhete 
klassifikatsiooni. Gamma ja teised esitavad hulga hästikirjeldet ja klassifitseerit malle, kuid nende 
vahelised suhted pole klassifitseeritud. Nende klassifikatsiooniskeem, mis põhineb skoobil (klass, 
objekt, liitobjekt) ja iseloomustusel (loov, struktuurne, käitumuslik), on ortogonaalne 
siinkirjeldatule.

3.1. Disainimallide klassifikatsiooni skeemid E.Gamma järgi



3.1.1. Loovad disainimallid

Loovad disainimallid abstraheerivad isendite loomise protsessi (instantiation). Sellega aitavad nad 
teha tarkvarasüsteemi sõltumatuks sellest, kuidas objekte luuakse, ühendatakse ja kujutatakse.
Klassi loovad disainimallid kasutavad pärimist et varieerida klassi, mille isendeid luuakse, aga 
objekti loovad disainimallid delegeerivad loomise teisele objektile.

Loovad disainimallid muutuvad tähtsaks, kui süsteem areneb rohkem kompositsioonist kui 
pärimisest sõltuvaks. Sellisel juhul siirdub rõhk ettemääratud käitumiste (behavior) kodeerimisest 
väiksema hulga fundamentaalsete käitumiste kirjeldamisele, mida saab kombineerida suvaliseks 
arvuks keerukamateks käitumisteks.

Kõik loovad disainimallid kapseldavad teadmise süsteemi kuuluvate konkreetsete klasside kohta ja 
nendesse klassidesse kuuluvate isendite loomise ja ühendamise viisid.

3.1.2. Struktuuri disainimallid

Struktuuri disainimallid tegelevad sellega, kuidas klassid ja objektid moodustavad suuremaid 
struktuure. Klassi struktuuri mallid kasutavad pärimist liideste või realisatsioonide 
komponeerimiseks (lihtsaim näide on mitmene pärivus). Objekti struktuuri disainimallid kirjeldavad 
kuidas koostada objekte, et tekiks uus funktsionaalsus. Sellisel juhul osutub võimalikuks muuta 
funktsionaalsust töö ajal.

3.1.3. Käitumise disainimallid

Käitumise disainimallid tegelevad algoritmide ja objektide vaheliste kohustuste jagamisega. 
Käitumise disainimallid ei kirjelda ainult objektide ja klasside malle vaid samuti nende vahelise 
suhtlemise malle. Neid malle iseloomustab keerukas juhtimisvoog, mida on töö ajal raske jälgida, 
selleks juhivad nad tähelepanu juhtimisvoolt viisile, kuidas objektid on ühendet.

Klassi käitumise disainimallid kasutavad pärimist, et käitumist klasside vahel jaotada. Objekti 
käitumise disainimallid kasutavad kompositsiooni pärimise asemel ja mõned neist näitavad, kuidas 
grupp objekte koostöös lahendab ülesandeid, mida ükski neist üksikult võttes ei saaks lahendada.

Eesmärk

Loomine Struktuur Käitumine

Skoop Klass Tehasmeetod Adapter (klass) Interpretaator
Näidismeetod

Objekt Abstraktne Tehas
Ehitaja
Prototüüp
Üksik

Adapter (objekt)
Sild
Liitobjekt
Dekoraator
Fassaad
Kärbeskaallane
Asemik

Vastutuse Jada
Käsk
Iteraator
Vahendaja
Momentvõte
Vaatleja
Olek
Strateegia
Külastaja



3.2. Disainimallide klassifikatsiooni skeemid W. Zimmer'i järgi

Nagu eespool üteldud peab iga mallide süsteem sisaldama klassifikatsiooni skeemi. Mõistlik 
kategooriate hulk mallide klassifitseerimisel aitab kasutajat leida vajalikud mallid. Iga kategooria 
peab esitama selget kriteeriumit või disaini teemat, mis mängib tähtsat rolli tarkvara arenduses. 
Võib eristada järgnevaid kolme kategooriat.

3.2.1. Granulaarsus

Tarkvarasüsteemi väljatöötamine nõuab tegutsemist erinevatel abstraktsioonitasemetel. 
Granulaarsust võib määratleda: 

• ·Arhitektuurilised raamistikud: Iga tarkvaraarhitektuur on ehitet vastavalt üldisele 
struktureerimise põhimõttele. Neid põhimõtteid kirjeldavad arhitektuurilised raamistikud 
(architectural frameworks):
Arhitektuuriline raamistik esitab põhimõttelist vormide kogu (paradigmat) 
tarkvarasüsteemide struktureerimiseks. Ta annab ettemääratud alamsüsteemide hulga ja 
reeglid suhete loomiseks nende vahel.
Arhitektuurilised raamistikud on kui näidised konkreetsetele tarkvara arhitektuuridele, nad 
määravad süsteemi struktuuri ja mõjutavad alamsüsteemide arhitektuuri. Seega lubavad 
arhitektuurilised raamistikud hallata struktuurset keerukust tarkvarasüsteemides. Mingi 
kindla arhitektuurilise raamistiku valik tarkvarasüsteemi jaoks on fundamentaalne disaini 
otsus.
Näide: Mudel-Vaade-Kontroller. 

• ·Disainimallid: Tarkvara arhitektuur koosneb tavaliselt mitmetest väiksematest arhitektuuri 
ühikutest, neid kirjeldavad mallid.
Disaini mall kirjeldab tarkvara arhitektuuri alamsüsteemide ja komponentide 
struktureerimise põhiskeemi, ja nende vahelisi suhteid. Ta identifitseerib, nimetab ja 
abstraheerib üldist disainipõhimõtet, kirjeldades tema erinevaid osi ja nende koostööd ning 
ülesandeid [Gamma].
Disaini malle võib vaadelda mikroarhitektuuridena, disaini mall on väiksem, kui terviklik 
tarkvara arhitektuur või arhitektuuriline raamistik.
Disaini mall võib olla seotud teiste disainimallidega ja koosneda mitmest väiksemast mallist.
Näide: Mediaator. 

• ·Idioomid: Idioomid tegelevad mingi disaini küsimuse konkreetsete realisatsioonidega.
Idioom kirjeldab, kuidas realiseerida mingit malli osa, osa funktsionaalsust, või osade 
vahelist suhet. Nad on sageli konkreetsest programmeerimiskeelest sõltuvad.
Idioomid on madalaima taseme mallid, nad on tugevalt seotud mingi kindla 
programmeerimiskeelega. Kui sama idioomi eksisteeribki erinevates 
programmeerimiskeeltes, on tema kuju erinev.
Näide: Viidete loendamine C++ (see idioom ei oma mõtet Smalltalk'is, kuna seal on 
automaatne prügikoristus (garbage collection)).

3.2.2. Funktsionaalsus

Teine mallide klassifitseerimisekategooria on funktsionaalsus. Iga mall on eeskujuks (template) 
konkreetse funktsionaalsuse realiseerimisel. Võib eristada järgnevaid funktsionaalsuse klasse: 

• ·Objektide loomine (Loomine): Mallid mis kirjeldavad, kuidas luua keerukaid, 
rekursiivseid või kompleksseid objektide struktuure. 

• ·Objektide vaheline suhtlemine (Suhtlemine): Mallid mis kirjeldavad, kuidas 



organiseerida koos töötavate objektide (mis võivad olla iseseisvalt välja töötatud või 
hajutatud) hulgas suhtlemist. 

• ·Juurdepääs objektidele (Juurdepääs): Mallid mis kirjeldavad, kuidas kasutada objektide 
poolt pakutavaid teenuseid ja pääseda juurde nende olekule ilma kapseldumist rikkumata. 

• ·Keerukate protsesside organiseerimine: Mallid mis kirjeldavad, kuidas jagada 
ülesandeid koos töötavate objektide vahel, et lahendada keerukaid ülesandeid.

3.2.3. Struktuursed Põhimõtted

Et realiseerida oma funktsionaalsust, toetuvad mallid kindlatele arhitektuurilistele põhimõtetele, 
mis moodustavad kolmanda kategooria. 

• ·Abstraktsioon (abstraction): Mall vaatleb abstraktselt või üldistatult konkreetset (sageli 
keerukat) olemit (entity) tarkvarasüsteemis 

• ·Kapseldumine (encapsulation): Mall kapseldab mingi kindla objekti, komponendi või 
teenuse detailid, et teha tema kliendid neist sõltumatuteks või kaitsta neid juurdepääsu 
eest. 

• ·Huvide lahusus (separation of concerns): Mall eristab konkreetsed ülesanded 
(responsibilities) eristatud objektidesse või komponentidesse, et konkreetset ülesannet 
(task) lahendada või konkreetset teenust osutada. 

• ·Seotus ja Kokkukuuluvus (coupling and cohesion):Mall kaotab või nõrgendab 
struktuurseid või suhlemis seoseid ja sõltuvusi muidu tugevalt seotud objektide vahel.

Iga malli võib süsteemis klassifitseerida eelpooltoodud kategooriate järgi. Et konkreetses 
disainiolukorras klassifikatsioonisüsteemi kasutada, tuleb teha järgmist: 

• Määrata malli nõutud granulaarsus. Kas mallil põhineb kogu rakendus, alamsüsteem või 
komponent, või konkreetse disaininõude realisatsioon.. 

• Valida vajalik funktsionaalsus. Kui on vaja kombineerida mitut funktsionaalsust, tuleb valida 
mall, mis annab kõik nõutavad funktsionaalsused ise, või mallid, mis annavad need 
koostöös. 

• Määrata soovitavad struktuursed põhimõtted. Mall tuleb valida vastavalt antud olukorras 
kõige kasulikumale ja tähtsamale struktuursele põhimõttele.

Klassifikatsiooni süsteem pole mõeldud õige malli valikuks -- otsuse peab tegema disainer, aga ta 
aitab disainereid otsida antud olukorra jaoks sobivat malli.

Mallid saame jaotada semantiliselt erinevatesse tasemetesse: 

• Põhilised disainimallid ja tehnikad 
• Disainimallid tüüpiliste tarkvarasüsteemides esinevate probleemide lahendamiseks 
• Rakendusvaldkonnale spetsiifilised disainimallid

Disainimallide jaotamine tasemetesse:



4. Disainimallide kasutamine objekt-orienteeritud tarkvara disainis

Kuidas valida disainimalli: 

• Vaadelda, kuidas disainimallid probleemi lahendavad. Uurides, kuidas mallid aitavad leida 
vajalike objekte, määrata objektide granulaarsust, kirjeldada objektide liideseid, ja muid 
vahendeid, mida mallid kasutavad probleemide lahendamisel, võib leida oma disaini sobiva 
malli. 

• Lugedes mallide eesmärgikirjeldusi. Tuleb leida mall, mille eesmärgi kirjeldus on lähedaseim 
lahendust nõudvale probleemile. 

• Uurida, kuidas on mallid omavahel seotud. Mallide vaheliste suhete järgimine juhatab kätte 
vajaliku malli või mallide rühma. 

• Võrrelda sarnase otstarbega malle. Kataloog (Gamma) jaotub kolmeks osaks: loovad mallid, 
struktuuri mallid ja käitumismallid. 

• Juurelda ümberdisainimise põhjuste üle. 
• Mõtelda, mis peab olema teie disainis muutuv. Keskenduda tuleb muutuva mõiste 

kapseldamisele.

Kuidas kasutada disaini malli: 

• Loe mall läbi, et saada ülevaadet. Eriti kinnita tähelepanu rakendatavuse ja tagajärgede 
kirjeldustele, et tagada malli sobivus. 

• Uuri struktuuri, osalejate kirjeldusi ja koostöö kirjeldust. 
• Vaatle näitekoodi. See näitab, kuidas malli oleks õige realiseerida. 
• Vali nimed mallis osalejatele, mis on sinu rakenduse kontekstis mõtestatud. Malli kirjelduses 



kasutatud osalejate nimed on tavaliselt liialt abstraktsed. 
• Kirjelda klassid. Kirjelda nende liideseid, pärivussuhteid ja isendimuutujaid. Erista 

rakenduses olemasolevad klassid, mida mall puudutab ja muuda neid vastavalt. 
• Kirjelda rakendusele omased nimed malli operatsioonide jaoks. 
• Realiseeri operatsioonid, et mallis olevaid ülesandeid (responsibility) ja koostööd 

(collaborations) täita.

Smalltalk'i MVC sisaldab mitmeid disaini malle, millest põhilised: 

• Mudel ja Vaated on lahtiühendet Vaatlejat kasutades 
• Vaated võivad olla paigutet üksteise sisse, mis viitab Liitobjekti kasutamisele 
• Vaate ja Kontrolleri vaheline suhe vastab Strateegia'le

Esineb ka muid nagu Vaikimisi antava Kontroller'i klassi määrab Tehasmeetod ja Vaatele lubab 
lisada elemente Dekoraator

5. Korduvkasutatava tarkvara disainimise peamised probleemid

Kaks kõige laiemalt kasutatud tehnikat funktsionaalsuse taaskasutamiseks objekt-orienteeritud 
süsteemides on pärimine ja objektide kompositsioon. Pärimise korral kirjeldatakse ühe klassi liidest 
teise klassi liidese abil, sellist taaskasutamist nimetatakse sageli valge-kasti taaskasutuseks 
(viitates nähtavusele). Objektide kompositsioon on alternatiiviks pärimisele, siin saavutatakse uus 
funktsionaalsus objektide liitmisega. Objektide kompositsioon nõuab objektidelt hästi määratletud 
liideseid. Seda taaskasutuse stiili nimetatakse musta-kasti taaskasutuseks, kuna objektide 
sisemised detailid pole nähtavad.

Mõned olukorrad, mis tekitavad taaskasutamisel ümberdisainimist põhjustavaid probleeme, mida 
vastavate mallide abil saaks vältida: 

• Objekti loomisel klassi avalik näitamine. See seob programmi konkreetse liidese asemel 
konkreetse realisatsiooniga. Selle vältimiseks tuleb luua objekte kaudselt.
Kasutatavad mallid: Abstraktne Tehas, Tehas Meetod, Prototüüp. 

• Sõltuvus konkreetsetest operatsioonidest. Näidates konkreetset operatsiooni seotakse 
programm slle konkreetse realisatsiooniga.
Kasutatavd mallid: Vastutuse Jada (Chain of Responsibility), Käsk. 

• Sõltuvus riistvarast ja tarkvarast. Välised operatsioonisüsteemi liidesed ja 
rakendusprogrammeerija liidesed (API) on erineva riist- ja tarkvaraplatvormidel erinevad.
Kasutatavd mallid: Abstraktne Tehas, Sild. 

• Sõltuvus objektide esitusest ja realisatsioonist. Kliente, kes teavad, kuidas objekt on ehitet, 
salvestet ja leitav, tuleks objekti realisatsiooni muutumisel muuta.
Kasutatavd mallid: Abstraktne Tehas, Sild, Momentvõte (Memento), Asemik (Proxy). 

• Sõltuvus konkreetsetest algoritmidest. Algoritme laiendatakse, optimiseeritakse ja 
vahetatakse sageli arenduse ja taaskasutuse käigus. Objekte, mis nendest sõltuvad tuleks 
vastavalt muuta.
Kasutatavd mallid: Ehitaja, Iteraator, Strateegia, Näidismeetod (Template Method), Külastaja 
(Visitor). 

• Tihe side. Klasse, mis on tihedalt seotud (coupled) on raske taaskasutada. Tihe side viib 
monoliitsete süsteemide tekkimisele, kus eisaa midagi muuta ilma mitmest klassist aru 
saamata ja neid muutmata.
Kasutatavad mallid: Abstraktne Tehas, Sild, Vastutuse Jada, Käsk, Fassaad, Vahendaja, 
Vaatleja. 



• Funktsionaalsuse laiendamine pärivuse abil. Objekti spetsialiseerimine pärimist kasutades 
on sageli raske. Iga uus klass lisab koos funktsionaalsusega ka kindla hulga vältimatuid 
tegevusi (alustamine, lõpetamine, ...), samuti nõuab pärimise kasutamine päritava klassi 
täielikuu tundmist. Pärimise kasutamine võib viia plahvatuslikule klasside hulga kasvule 
(ühe alamklassi tegemine võib nõuda teiste alamklasside tegemist). Objektide 
kompositsioon ja delegatsioon pakuvad paindliku alternatiivi pärimise kasutamisele 
käitumise muutmisel. Teisest küljest kompositsiooni laialdane kasutamine raskendab 
disainist arusaamist.
Kasutatavd mallid: Sild, Vastutuse Jada, Liitobjekt (Composite), Dekoraator, Vaatleja, 
Strateegia. 

• Võimatus klasse muuta. Vahel on vaja muuta klassi, mida ei saa kas lähtekoodi puudumise 
tõttu või mõnel muul põhjusel lihtsalt muuta.
Kasutatavd mallid: Adapter, Dekoraator, Külastaja.

6. Disainimallide rakendamine praktikas

Probleemid mallide realiseerimisel: 

1. Praeguse realiseerimisstiili korral kaovad mallid kodeerimisel. See põhjustab hilisemaid 
probleeme silumisel ja hooldamisel. 

2. Mitme malli kooskasutamine põhjustab suure hulga üksteisest sõltuvate klasside teket. 
3. Siiani puudub konkreetsete taaskasutatavate mallide teek.

Eelnevast loetelust probleemid 1. ja 2. saab lahendada esitades igat malli erilise klassiga, mida 
nimetame Malli klass (ka hüperklass). See klass kapseldab kogu malli käitumise ja loogika.
Coad'i poolt toodud mallide kasutamise näites: 

On kaasatud kuus malli: 



Lisaks rakendusest tulenevatele klassidele tuleks lisada malliklassid, mis omaksid suhteid 
rakenduse klassidega (friend), jättes rakenduse klassid üksteisest sõltumatuks.

7. Raamistikud

Raamistik (framework) on hulk koostöötavaid klasse, mis moodustavad taaskasutatava disaini 
mingisse konkreetsesse klassi kuuluva tarkvara jaoks. Raamistik määrab kogu rakenduse 
arhitektuuri, tema jaotumise klassidesse ja objektidesse, tähtsamad kohustused, seega ka kuidas 
klassid ning objektid koos töötavad ja juhtimisvoo. Raamistik tähtsustab disaini taaskasutamist 
koodi taaskasutamise asemel, ehkki tavaliselt sisaldavad raamistikud konkreetseid klasse, mida 
saab koheselt kasutada.

Raamistike erinevused disainimallidest: 

• Disaini raamistikud on raamistikest abstraktsemad. Raamistike saab kehastada koodis, aga 
ainult disaini raamistike näiteid võib koodis kehastada. Raamistike jõud ongi selles, et neid 
võib valmis kodeerida ja seega valmilt taaskasutada. Disainimallid tuleb iga kord uuesti 
realiseerida aga nad kirjeldavad eesmärke ja lahenduse hinda ning tagajärgi. 

• Disainimallid on väiksem arhitektuuriline ühik, kui raamistikud. Tavalisekt sisaldab raamisti 
mitut disaini malli. 

• Disainimallid on vähem spetsialiseeritud, kui raamistikud. Raamistikel on alati konkreetne 
rakendusvaldkond aga disaini malle saab kasutada rakendusvaldkonnast sõltumata. Isegi 
kui siduda disaini mall mingi konkreetsema valdkonnaga nagi hajussüsteemid või 
paralleelprogrammeerimine ei dikteeri nad rakenduse arhitektuuri, nagu raamistikud.

Raamistikud sisaldavad rakendusvaldkonna üldisi abstraktsioone -- nende struktuuri ja 
mehhanisme, jättes rakenduse-spetsiifilised struktuurid ja käitumise rakenduse väljatöötajale. 
Raamistike tüüpilised esindajad on MacApp, ET++, Interviews, Choices, MFC, ... Raamistik on 
korduvalt kasutatav disain, mis on esitatud abstraktsete klassidega ja viisiga kuidas nende 
klasside isendid koos töötavad.
Raamistik: 

• sisaldab integreeritud, rakendusvaldkonnast sõltuvat funktsionaalsust (klassiteegi klassid on 
tavaliselt valdkonnast sõltumatud) 

• omab töö ajal juhtimist (klassiteegile baseeruv disain asetab juhtimisvoo rakendusse) 



• on poolik rakendus (rakenduse lõpetamine toimub parametriseerimisega ja abstraktsete 
klasside spetsialiseerimisega)

Raamistiku juhtimisvoog on juhitud tagasikutsete (callback) poolt.

Raamistikele orienteeritud disainimallide põhiline eesmärk on kirjeldada raamistikku ja temas 
olevaid klasse ilma realisatsiooni paljastamata. Võib sisse viia metamalli mõiste, mis kirjeldab 
kuidas sõltumata rakendusvaldkonnast koostada raamistike.
Raamistike disainimisel on põhiliseks printsiibiks kitsa pärimisliidese printsiip (narrow inheritance 
interface principle) -- Weinand, mis ütleb: 'käitumine, mis on hajutet üle mitme meetodi, peab 
baseeruma minimaalsel meetodite hulgal, mida peab ülekirjeldama'. Vastasel juhul peavad 
kliendid alamklassides palju meetodeid ülekirjeldama, et ühte käitumist seada.
Mõned rusikareeglid: 

• Nõrk side klasside (nende isendite) vahel -- objektid peaks vahetama nii vähe andmeid kui 
võimalik. 

• Tugev side klassi sees -- ei tohi olla ei meetodeid ega andmeid ilma suheteta; saavutatav 
kirjeldades klassiga vaid ühte abstraktsiooni. 

• Minimaalne vajalik liides -- tuleb vältida sama teenuse osutamist mitme väikeste 
erinevustega liidese kaudu. 

• Testitavus -- klassi õigsust peab olema võimalik kontrollida teadmata millises kontekstis 
klassi kasutatakse.

Klasside/Objektide liidesed ja suhtlemine

Näidis- ja konksmetodid (Template and Hook methods)
Näidismeetodid kirjeldavad abstraktset käitumist, üldist juhtimisvoogu või objektide vahelisi 
suhteid.
Näidismeetodid põhinevad konksmeetoditel, mis võivad olla abstraktsed meetodid.
Keerukad meetodid on näidismeetodid ja nad on realiseeritud konksmeetodite abil.

Klasside/Objektide kompositsioon (Class/Object Composition)

Näidis- ja konksklassid (Template and Hook classes)
Konksklass parametriseerib näidisklassi. Üldiselt võib näidisklassi ja konksklassi vahel luua sideme: 

• isendimuutuja abil, mis viitab konksklassile 
• edastades viite objektile kui meetodi parameetri 
• globaalse muutujaga, mis viitab konksklassile

8. Disainimallide kataloog

Gamma disainimallide kataloog: 

Otstarve Disaini Mall Eesmärk

Loomine
(Creational)

Abstraktne Tehas (Abstract 
Factory)
{Komplekt -- Kit}

tekitada liides seotud sõltuvate objektide 
loomiseks ilma nende konkreetset klassi 
näitamata



Ehitaja (Builder) eraldada keeruka objekti ehitamine tema 
esitusest, et sama ehitusprotsess võiks luua 
erinevaid esitusi

Tehasmeetod (Factory Method)
{Näivkonstruktor -- Virtual 
Constructor}

kirjeldada liides objekti loomiseks jättes 
alamklassidele võimalus otsustada, millisesse 
klassi isend luua

Prototüüp (Prototype) määrata millised objektid tuleb luua 
prototüüpse isendi alusel ja luua uued 
objektid kopeerides seda isendit

Üksik (Singleton) tagada, et klassil on ainult üks isend ja anda 
talle globaalne juurdepääs

Struktuur
(Structural)

Adapter (Adapter)
{Ümbrik -- Wrapper}

muundada klassi liides selliseks mida ootab 
klient; lubab koos töötada klassidel, millede 
liidesed ei sobi

Sild (Bridge)
{Käsik/Keha -- Handle/Body}

eraldada abstraktsioon oma realisatsioonist 
nii, et mõlemad võivad iseseisvalt muutuda

Liitobjekt (Composite) liita objekte puustruktuurideks, mis kujutavad 
osa-tervik hierarhiaid; lubab klientidel 
üksikobjekte ja liitobjekte ühetaoliselt 
käsitleda

Dekoraator (Decorator)
{Ümbrik -- Wrapper}

lisada dünaamiliselt objektile 
lisafunktsionaalsust (responsibilities); pakub 
paindlikku alternatiivi pärimisele 
funktsionaalsuse laiendamisel

Fassaad (Facade) pakkuda ühetaolist liidest tervele liideste 
hulgale alamsüsteemis; kirjeldab kõrgema 
taseme liidese, mis teeb alamsüsteemi 
kergemini kasutatavaks

Kärbeskaallane (Flyweight) kasutada jagamist (sharing) suure hulga 
väikeste objektide effektiivseks 
realiseerimiseks

Asemik (Proxy)
{Surrogaat -- Surrogate}

pakkuda surrogaatobjekti mingi teise objekti 
asemel, et kontrollida talle juurdepääsu

Käitumine
(Behavioral)

Vastutuse Jada (Chain of 
Responsibility)

vältida päringu saatja ja vastuvõtja vahelist 
tihedat sidestust (coupling), andes 
rohkemale, kui ühele objektile võimalus 



päringut täita; paigutada vastuvõtjad jadasse 
ja anda päringut piki jada edasi kuni leidub 
objekt, kes ta täidab

Käsk (Command)
{Tegevus, Transaktsioon -- Action, 
Transaction}

kapseldada päring kui objekt, lubades 
parametriseerida kliente erinevate 
päringutega, paigutada päringuid järjekorda, 
pidada päringute kohta logi ja toetada 
tühistatavaid operatsioone

Interpretaator (Interpreter) kirjeldada antud keele grammatikale esitus 
koos interpretaatoriga, mis kasutab seda 
esitust

Iterator (Iterator)
{Kursor -- Cursor}

pakkuda järjestikust juurdepääsu objektide 
struktuuri (hulga) elementidele ilma 
realisatsiooni paljastamata

Vahendaja (Mediator)
{Haldur -- Manager}

kirjeldada objekt, mis kapseldab hulga teiste 
objektide suhtlemise viisi; vahendaja hoiab 
objekte üksteisele viitamast ja lubab nende 
vahelist suhtlemist neist sõltumatult 
varieerida

Momentvõte (Memento)
{Suveniir? -- Token}

esitada ilma kapseldumist lõhkumata väliselt 
objekti sisemine olek, et seda saaks 
salvestada ja hiljem taastada

Vaatleja (Observer)
{Sõltlased, Avalda-Telli -- 
Dependents, Publish-Subscribe}

määrata üks-mitmele suhe objektide vahel 
nii, te kui ühe objekti olek muutub, kõik 
temast sõltuvad objektid saavad teada ja 
võivad end uuendada

Olek (State) lubab objekti muuta oma käitumist vastavalt 
sisemisele olekule

Strateegia (Strategy)
{Poliitika -- Policy}

määrata algoritmide pere, kapseldada nad ja 
muuta vahetatavateks; lubab muuta algoritmi 
klientidest sõltuvalt

Näidismeetod (Template Method) määrata algoritmi struktuur (skeleton) 
viivitades mingite osade kirjeldust 
alamklassideni; lubada alamklassidel 
varieerida algoritmi osi

Külastaja (Visitor) esitada operatsiooni, mida tuleb rakendada 
objektide struktuuri osadele; lubab kirjeldada 



uusi operatsioone, muutmata nende 
elementide klasse, milledel ta opereerib

Otstarve Disaini Mall Aspektid, mis võivad muutuda

Loomine Abstraktne Tehas (Abstract 
Factory)

toodetavate objektide pered

(Creational) Ehitaja (Builder) viis, kuidas liitobjekti luuakse

Tehasmeetod (Factory Method) objekti alamklass, millesse isend luuakse

Prototüüp (Prototype) objekti klass, millesse isend luuakse

Üksik (Singleton) klassi ainus isend

Struktuur Adapter (Adapter) objekti liides

(Structural) Sild (Bridge) objekti realisatsioon

Liitobjekt (Composite) objekti struktuur la koosteviis

Dekoraator (Decorator) objekti ülesanded ilma pärimiseta

Fassaad (Facade) alamsüsteemi liides

Kärbeskaallane (Flyweight) objketide mäluvajadus

Asemik (Proxy) juurdepääs objektile; objekti asukoht

Käitumine Vastutuse Jada (Chain of 
Responsibility)

objekt, mis päringu täidab

(Behavioral) Käsk (Command) kus ja kuidas päring täidetakse

Interpretaator (Interpreter) keele grammatika ja semantika

Iterator (Iterator) juurdepääs hulga elementidele ja viis kuidas 
hulka läbitakse

Vahendaja (Mediator) kuidas ja millised objektid suhtlevad

Momentvõte (Memento) milline sisemine info ja kunas on objektist 



väljaspoole salvestatud

Vaatleja (Observer) objektide hulk, mis sõltub objektist; viis 
kuidas sõltuvaid objekte uuendatakse

Olek (State) objekti olekud

Strateegia (Strategy) algoritm

Näidismeetod (Template Method) algoritmi sammud

Külastaja (Visitor) operatsioonid, mida rakendatakse 
objektidele, ilma nende klasse muutmata

Gamma disainimallide kataloogi üldine struktuur:

Mallid klient/server süsteemide tegemiseks mis sisaldavad liideseid vanadesse (legacy) 
süsteemidesse: 

Nimi Probleem Lahendus



Erand (Exception) Ebanormaalsed asjad juhtuvad 
tavaliselt kaugel punktist kus 
programm peaks antud olukorrale 
vastama.

Probleemide määratlemine klassi 
Exception täpsustustena lubab ehitada 
tingimuste hierarhiat ja uhendada lahti 
probleemi tuvastamist ning lahendamist.

Üksik (Solitaire 
(Singleton))

Mõnedest objektidest on rakenduses 
vaid üks isend.

Üksiku kaks rolli, on tähtsaimad: 
identifikaatorid -- objektide identiteedi 
leidmiseks ja
hoidjad -- mingi ressursi haldajad.

Objektid 
Kirjetest (Objects 
from Record)

Andmevahetus OO klientide ja 
vanade andmebaasisüsteemide 
vahel on komplitseeritud keeruka 
struktuuriga objektmudeli ja lameda 
relatsioonilise mudeli vaheliste 
erinevuste tõttu.

Andmetele juurdepääs nihutatakse 
Äriobjektist selleks ettenähtud 
Kirjeobjekti (Record object). Äriobjekt 
ümritseb objekti isendiandmeid esitava 
Kirje vajaliku käitumisega.

Päring (Request) Klient/Server süsteemid kasutavad 
erinevaid sideliideseid/-protokolle 
andmevahetuseks keskarvuti 
rakendustega, millede erinevused 
peaksid olema nähtamatud kliendile.

Klient loob Päringu objekti, mis 
atomaarselt vahetab hulga sisendkirjeid 
hulga väljundkirjete vastu. Seega 
kapseldab Päring ühe serveri 
transaktsiooni (tööühiku).

Materialiseerimi
ne 
(Materialization)

Objekt-orienteeritud klient/server 
süsteemi põhiomaduseks on kliendi 
objektide kujutamine serveris, 
hoolimata sellest, kas server toetab 
objekte või ei. Lisaks peab kliendi 
rakenduskood olema sõltumatu 
sellest kujutusest.

Materialiseerimise mall kasutab Päringu 
ja Objektid Kirjetest malle serveri 
andmete objektideks muundamiseks, 
kasutades proxy või ghost'i malli.
Proxy asub mingi objekti ja tema 
kasutajate vahel, ning näib olevat antud 
objekt, viies sisse kaudsuse, mis 
maskeerib, millise astmeni antud objekt 
on materialiseerunud.
Ghost ei oma käitumist ja esimese teate 
saamisel materialiseerib ta tegeliku 
objekti ning "muundub" temaks. Proxy 
omab tegeliku objekti liidest ja jääb 
tegelikku objekti ümbritsema, olles tema 
ainuke väline liides.

Lõpetamine 
(Finalization)

Rakendustes on sageli vaja midagi 
ette võtta, kui objekt või viimane viit 
objektile eemaldatakse -- näiteks 
operatsioonisüsteemi ressursid.

Lõpetamise malli realiseerimiseks võib 
kasutada viitade lugemist (reference 
counting).

Identiteedi 
Haldamine 
(Identity 
Management)

Kuna objektid materialiseeritakse 
identiteedita kirjetest, võib rakendus 
materialiseerida sama objekti mitu 
koopiat, mis võtavad kasutult ruumi 
ja lisavad ebajärjekindlate 

Et takistada äriobjektide paljusust, 
kasutatakse Identiteedi Haldamise malli. 
Vastutus lasub abstraktsel klassil Fail 
(File). Fail on Üksik, mis haldab 
äriobjektide identiteeti, kindlustades, et 



versioonide (inconsistent versions) 
tekkimise riski.

kui kaks päringut tagastavad sama 
objekti, viitab teine olemasolevale 
objektile selle asemel, et luua uus 
koopia.

Virtuaalne List 
(Mega-Scrolling 
(Virual Lists))

Päringu poolt tagastatud objektide 
hulk võib olla liiga suur, et seda 
kliendis materialiseerida.

Virtuaalne List piirab tagastatava hulga 
suurust. Kui selline piiratud suurusega 
alamhulk ei rahulda kasutajat, koostab 
Virtuaalne List uue päringu eelneva 
alamhulgaga külgneva alamhulga 
saamiseks.
Virtuaalse Listi realisatsioon võib 
sisaldada küllalt infot, et iga järgnev 
alamhulk oleks serveri jaoks uue 
transaktsiooni tulemus, või toetuda ka 
püsivatele ressurssidele serveris, nagu 
SQL kursor.

Äriobjektide 
Otsing (Searching 
for Business 
Objects)

Huvipakkuva objekti leidmine on nii 
elementaarne tegevus, et on risk 
seda võtta enesestmõistetavana.

Äriobjektide Otsingu võib objektiseerida 
(reify) kirjeldades abstraktse klassi 
Otsing. Otsingu klassi kuuluvad objektid 
määravad otsingukriteeriumi. Fail saab 
otsingu protsessis Otsingu objekti kui 
parameetri ja tulemuseks on List või 
üksik objekt. Otsing kasutab Identiteedi 
Haldamist.

Sõltuvus 
(Dependency 
(Model-View, 
Broadcast, 
Observer, MVC))

Äriobjektide ja neid kuvavate ning 
juhtivate vaateobjektide 
ühendamine on halb, kuna ta teeb 
koodi keerukaks ja varjab 
kontseptuaalse mudeli -- mudeli 
käitumine osutub seotuks 
kasutajaliidese käitumisega.

Esmatööd mudeli objektide ja nende 
vaadete lahti ühendamisel tehti 70-
ndatel Xerox'i PARC'is MVC (Model-View-
Controller) malli väljatöötamisel. 
Tänapäeval on algne MVC triaad liitunud 
MV düaadiks. Olles vanim ja OO mall on 
teda aegade jooksul kirjeldatud paljude 
erinevate nimede all. Kuna seda malli 
saab rakendada ka kasutajaliideseta, 
nimetame teda Sõltuvuseks.

Äriobjektide 
Loomine ja 
Uuendamine 
(Creating and 
Updating Business 
Objects)

Äriobjektid peavad tekkima ja 
muutuma ajas. Need tegevused 
saavad alguse kliendis ja peavad 
lõpuks peegelduma serveris. Need 
tegevused muutuvad keerukamaks, 
kui objektid sõltuvad üksteisest.

Fail kasutab materialiseerimist 
muudatuste rakendamiseks 
äriobjektidele. Uuendused peavad 
levima sõltuvatele objektidele, et ka 
need saaksid uueneda, seda saab teha 
kasutades malli Sõltuvus.



Tehas-meetod 
(Factory Method)

Luues vaateobjekti mudelile, on 
parem, kui kliendi kood teem 
minimaalselt eeldusi. Üldjuhul ei 
tohiks klient teada isegi vaate klassi.

Tehas-meetod (Gamma), loob 
olemasoleva objektiga seotud objekti ja 
vabastab oma kliendi vajadusest teada, 
milline see objekt peab olema.

Akende 
Hoidmine 
(Window-Keeping)

Keerukate akende ehitamine iga 
kord algusest peale võib olla kallis. 
Samuti tekib probleem, kui rakendus 
soovib avada akent äriobjektile, 
millele on juba aken avatud -- uue 
akna loomise asemel peaks 
olemasolev aken kõikide peale 
tõstetama.

AknaHoidja klass on Üksik, mis haldab 
kõiki rakenduse aknaid. AknaHoidja võib 
suletud aknaid varuks hoida, mitte 
hävitada, et neid järgmise avamisnõude 
korral uuesti kasutada. Samuti võib ta 
juba avatud akna leida ja teiste akende 
peale tuua.

Vaatamine 
(Viewing)

Äriobjektide leidmise ja uuendamise 
kõrval on rakenduse poolt 
nõutavatest funktsioonidest puudu 
veel vaatamine.

Vaatamine nõuab tavaliselt laia 
funktsioonide valikut, mida pakub mingi 
kasutajaliidese tööriistade komplekt. 
Lisaks sellele vajab Vaatamine veel 
Tehas-meetodi, Sõltuvuse, ja Akende 
Hoidmise malle eelpoolmainitud 
probleemide lahendamiseks.

Klient/Server 
Raamistik (A 
Client/Server 
Framework)

Objekt-orienteeritud klient/server 
raamistik, mis on ette nähtud 
vanade suurarvutite süsteemidega 
suhtlemiseks, peab lubama kasutajal 
leida teda huvitavaid objekte, neid 
vaadelda ja muuta (või luua).

Seega on Klien/Server Raamistik 
Otsingu, Vaatamise ja 
Loomise/Uuendamise mallide kogum.



Coad'i strateegiad ja mallid:

Objektimudeli ehitamise mallid: 

• Fundamentaalne mall 
• Transaktsiooni mallid

actor-participant, participant-transaction, place-transaction, specific item-transaction, 
transaction-transcation line item, transaction-subsequent transaction, transaction line item-
subsequent transaction line item, item-line item, specific item-line item, item-specific item, 
associate-other associate, specific item-hierarchical item

 
• Liitobjektide mallid

container-content, container-container line item, group-member, assembly-part, compound 



part-part, packet-packet component

 
• Plaanide mallid

plan-step, plan-plan execution, plan execution-step execution, step-step execution, plan-
plan version

 
• Interaktsiooni mallid

peer-perr, proxy-specific item, publisher-subscriber, sender-pass through-receiver, sender-
lookup-receiver, caller-dispatcher-caller back, gategeeper-request-resource

Strateegiad oma strateegiate ja mallide leidmiseks: 

#142. Strateegia "Uute Strateegiate avastamine"
avastamine (strateegiad)

• Analüüsi igat väikest sammu, mida sa teed objektmudeli mingi osa ehitamisel, millist nõu 
võiksid anda teistele, et nad sama ülesandega hakkama saaksid 



• Analüüsi igat objektmudeli parandust, millist nõu võiksid anda teistele, et vältida samu vigu

#143. Strateegia "Strateegiate täpsustamine"
avastamine (strateegiad)

• Kirjelda, mida sa tegid -- sinu strateegia 
• Rakenda seda mitu korda (kui võimalik, eri valdkondades) 
• Anna talle nimi ja kategoriseeri ta 
• Jaga teda teistega -- õpi nende reaktsioonidest

#144. Strateegia "Strateegiate kirjeldamine"
avastamine (strateegiad)

• Lisa kirjeldusse:
- nimi (vahetu siht) ja kategooria
- strateegia ise (kasutades "kuidas teen ..." vormi)
- näited

#145. Strateegia "Uute Mallide avastamine"
avastamine (mallid)

• Uuri igat suhtlevate objektide paari, kolmikut, nelikut (jne.) 
• Üldista osaliste nimed 
• Analüüsi kas teda saab rakendada teistes valdkondades

#146. Strateegia "Uute Mallide nimetamine"
avastamine (mallid)

• Otsi nime, mis kirjeldab osalisi suhtluses, mida nad tüüpiliselt teevad ja teavad 
• Anna mallile osaliste järgi nimi

- Vaatle sünonüüme
- Vaatle üldisemaid nimesid
- Vaatle metafoore analoogsetes süsteemides

#147. Strateegia "Mallide täpsustamine"
avastamine (mallid)

• Kirjelda mall 
• Kasuta teda mitu korda (kui võimalik, eri valdkondades) 
• Kategoriseeri mall (transaktsioon, liitobjekt, seade, interaktsioon, kombinatsioon, ...) 
• Jaga teda teistega -- õpi nende reaktsioonidest

#148. Strateegia "Mallide kirjeldamine"
avastamine (mallid)

• Lisa kirjeldusse:
- nimi ja kategooria
- mall ise -- objektmudeli näidis (template)
- tüüpilised interaktsioonid
- näited
- kombinatsioonid



Kategooria Strateegia Kirjeldus (tõlge)

Peamised 
tegevused ja 
komponendi
d

 1. Neli Põhitegevust, Neli 
Põhikomponenti

• Organiseeri oma töö nelja 
põhitegevuse ja nelja 
põhikomonendi ümber 

• Neli põhitegevust: Identifitseeri 
eesmärgid (purpose) ja omadused 
(features), vali objektid, sea paika 
ülesanded (responsibilities), tööta 
stsenaariumeid kasutades välja 
dünaamika 

• Neli põhikomponenti: 
Probleemivaldkond, 
iniminteraktsioon, andmete 
haldamine, süsteemi interaktsioon

Identifitseeri 
eesmärgid ja 
omadused

 2. Süsteemi Eesmärk
 3. Töö välja peal, Pildid ja Näited
 4. Selgita peamised stressi allikad
 5. Tööta välja omaduste nimekiri
 6. Nelja liiki omadused
 7. Arvutustulemused ja Otsustuspunktid
 8. Parimad ja Halvimad omadused
 9. Esikümme
10. Nüüd ja hiljem
11. Ümberehitused piiridel
12. Nupukad seadmed

 2. System Purpose
 3. Field Trips, Pictures, and Examples
 4. Identify Major Sources of Stress
 5. Develop a Features List
 6. Four Kinds of Features
 7. Calculation Results and Decision 
Points
 8. Best and Worst Features
 9. Top 10
10. Now and Later
11. Reengineering on the Boundaries
12. Smarter Devices

Vali objektid 
(malli 
mängijad)

13. Vali tegutsejad (actors)
14. Vali osalejad
15. Vali kohad
16. Vali kombatavad asjad
17. Vali transaktsioonid
18. Vali liitlased
19. Vali elemendid ja konkreetsed 
elemendid
20. Vali suhtlevad süsteemid ja seadmed
21. Vali objektide kogumid
22. Vali sisaldavad (konteiner-) objektid
23. Nimeta kogum
24. Kasuta vähimat võimaliku kogumit

13. Select Actors
14. Select Participants
15. Select Places
16. Select Tangible Things
17. Select Transactions
18. Select Associates
19. Select Items and Specific Items
20. Select Interacting Systems and 
Devices
21. Select Collections of Objects
22. Select Container Objects
23. Select a Collection
24. Select the Smallest Applicable 
Collection

Kirjandus

1. E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, 1994, pp. 



395.
2. W. Pree, Design Patterns for Object-Oriented Software Development, 1995, pp. 268.
3. Ed. by J. O. Coplien & D. C. Schmidt, Pattern Languages of Program Design, 1995, pp. 562.
4. P. Coad, D. North, M. Mayfield, Object Models: Strategies, Patterns, & Applications, 1995, pp. 
505.
5. J. Soukup, Taming C++: Pattern Classes and Persistence for Large Projects, 1994, pp. 416.


