Mallid tarkvara disainis (LAI8320)

Ulevaade

Disainimallide maaratlus. Disainimallide esitusviisid, mallide keeled, erinevad tahistused.
Disainimallide klassifikatsioon: loovad-, struktuuri- ja kaitumismallid. Disainimallide kasutamine OO
tarkvara disainis. Programm kui idee Ulestahendus. Tarkvara arhitektuuride korduvkasutus.
Raamistikud ja metamallid. Peamised probleemid korduvkasutatava OO tarkvara disainimisel.
Disainimallide ja metamallide kasutamine keerukate raamistike disaini mdistmisel. Disainimallide
rakendamine praktikas. Mallide avastamine olemasolevais rakendusis. Disainimallide kataloog:
uldised-, hajatootlus-, arisusteemide-, side- ja sundmuste haldamise disainimallid.

Sisukord
1. Disainimallide maaratlus. ("Mis on (ks disaini mall")

1.1. Disainimallide osad:.
a) probleem voi teema,
b) lahendus,

C) jareldus.

2. Disainimallide esitusviisid.

2.1. Alexander'i kuju.
2.2. Portland'i kuju.
2.3. Coad'i kuju.

2.4. Huperklass.

3. Disainimallide klassifikatsioon.

3.1. Loovad disainimallid.
3.2. Struktuuri disainimallid.
3.3. Kaitumise disainimallid.

. Disainimallide kasutamine objekt-orienteeritud tarkvara disainis. Programm kui idee esitus.
. Korduvkasutatava tarkvara disainimise peamised probleemid.

. Disainimallide rakendamine praktikas.

. Raamistikud.

. Disainimallide kataloog.

00O dO Ul &~

8.1. Uldised disainimallid.

8.2. Disainimallid hajatootluses.

8.3. Disainimallid arislUsteemides.

8.4. Disainimallid sides.

8.5. Disainimallid sindmuste haldamises.

So the real work of any process of design lies in the task of making up the language,
from which you can later generate the one particular design.

And, more subtly, we find also that different patterns in different languages have
underlying similarities, which sugge& that they can be reformulated to make them

more general, and usable in a greater variety of cases.

C. Alexander, The Timeless Way of Building

1. Disainimallide maaratlus
1.1. Disainimallid

Objekt-orienteeritud keeltes ja programmeerimissusteemides on toimunud areng klassiteekidest
(1970) erinevaid Ulesandeid komplektselt lahendavateks raamistikeks (frameworks). See areng
kulmineerub arhitektuurielementide korduvkasutamisega.

Klassiteekides sisalduvad objektid on korduvkasutamise suurem uhik, kui alamprogrammid ja
funktsioonid tavalistes programmiteekides, aga nad ei tdsta oluliselt arhitektuuri elementide
korduvkasutamise taset. PGhiprobleem on, et laialt kasutatava klassiskoop pole killalt suur, et
oluliselt vahendada kasitsi kirjutatavat koodi.

Disaini mall on korduv arhitektuuriline element, mis lahendab mingit disainiprobleemide hulka
kindlas kontekstis. Disainimallid aitavad parendada tarkvara arendust esitades edukaid
ekspertlahendusi sustemaatilisel ja kergeltkasutataval kujul.

Mallide klassifitseerimine osutub Gha tahtsamaks mallide kataloogide kasvades ja
tarkvaratoostuse kipsedes punktini, kus disainerid kasutavad mitmeid mallide katalooge (mallide
keeli) Uheskoos. Tanapaeval on mallide katalooge alates suhteliselt abstraktsetest arhitektuuri
raamistike mallidest, disainimallideni ja konkreetsete idioomideni. Arhitektuuri raamistike mallid
(nagu MVC) on tavaliselt séltumatud rakendusvaldkonnast. Vastupidiselt idioomideni (nagu viidete
loendamine), mis on sageli tugevalt seotud konkreetse programmeerimiskeelega. Disainimallid
pole sama sUstemaatilised kui arhitektuuri raamistikud, aga ka mitte nii seotud
programmeerimiskeelega kui idioomid.

Tarkvarasusteemi, eriti aga suuremdodtmelise tédstustarkavarasisteemi ehitamine on keerukas
protsess. Tuleb teha mitmeid disainiotsuseid: sisse tuua mitmeid komponente, tarkvara
funktisonaalsus tuleb nende komponentidega siduda, nende vahelised suhted tuleb maaratleda ja
kogu arhitektuur peab vastama teatud mittefunktsionaalsetele nduetele.

Mallid koosnevad ettevalmistatud disainistruktuuridest, mida saab kasutada ehituskividena
tarkavaraarhitektuuri ehitamiseks.

lga mall:

Annab ettemaaratud skeemi mingi teatud struktuurse voi funktsionaalse pohimdtte
realiseerimiseks tarkvarasusteemis, kirjeldades tema erinevaid osi ja nende koostegevust
ning vastutusalasid.

Kirjeldab olemasolevat, jareleproovitud disaini kogemust.

|dentifitseerib, nimetab, ja spetsifitseerib abstraktsioone, mis on klassidest ja isenditest
kdrgemal.

Pakub Ghist sdnastiku ja disainipdhimodtetest arusaamist.

Aitab tarkvara keerukust hallata.

On tarkvara arenduses taaskasutatav ehituskivi.

VGib olla kas rakendusvaldkonnast séltumatu, vdi soltuv.

Puudutab nii tarkvaradisaini funktsionaalseid kui mittefunktsionaalseid kilgi.

1.2. Mallide stisteem

Mallide ststeem, mida saab kasutada suvalise soovitava tarkvara arhitektuuri ehitamiseks ja
koostamiseks, koosneb paljudest erinevatest mallidest, mida kasutatakse paljudel erinevatel
otstarvetel. Kuna sellise slisteemi eesmargiks on ettemaaratud omadustega tarkvarasusteemide
sustemaatiline valjatodtamine, ei pisa mallide lUhikirjelduste loetelust, et sisteemi saaks
effektiivselt kasutada.

Kasutuskdlblik mallide stisteem peab:

Toetama susteemi arengut. Teatud mallid voivad muutuda ststeemi elutsikli jooksul, uusi
malle voib lisanduda ja olemasolevad voivad kaduda.

Kirjeldama koiki malle, mida ta sisadab Uhesugusel kujul. Need kirjeldused peavad
puudutama koiki aspekte, mis on tahtsad malli iseloomustamisel, detailne kirjeldus,
realisatsioon, valik, ja vordlused teiste mallidega.

Klassifitseerima malle, midata sisaldab, et juhatada mallide valikut konkreetse
disainisituatsiooni jaoks. Selline klassifikatsioonisusteem peab sisaldama kategooriaid
kriteeriumite voi disaini teemade kohta, mis mangivad tahtsat rolli tarkvara arenduses.
Vaatlema teemasid, mis puudutavad mallidest keerukate ja heterogeensete struktuuride
ehitamist. Mitte igat malli ei saa effektiivselt koos kasutada mistahes teise slisteemis oleva
malliga. Lisaks mojutab see, kuidas malle on koos kasutatud tulemuse omadusi nagu
taaskasutatavus voi muudetavus.

2. Disainimallide esitusviisid
Uldjuhul on mallil neli olulist osa:

‘Nimi -- see on probleemi kirjelduse, lahenduse ja selle tagajargede luhike (Uhe-kahe
sdnaline) iseloomustus. Malli nimi lisandub disaini-sdnastikule ja voimaldab raakida,
arutleda ja kirjutada mallist.

‘Probleem kirjeldab, kus/kunas malli rakendada. Ta selgitab probleemi ja selle konteksti,
kirjeldades simptomaatilisi klassi- v0i objektistruktuure. Mdnikord sisaldab probleem
tingimusi, mille korral mall on rakendatav.

-‘Lahendus kirjeldab elemente, mis moodustavad disain, nende vahelisi suhteid, nende
ulesandeid ja koost6dd. Lahendus ei kirjelda konkreetset disaini voi realisatsiooni, kuna
malle vdib rakendada mitmes situatsioonis.

‘Tagajarjed on malli rakendamise tulemused ja hind. Tagajarjed on sageli tahtsad disaini
alternatiivide hindamisel.

2.1. Alexanderi kuju
Alexander eristas mallidel kolme vajaliku osa:

‘Kontekst: Mingi konkreetne korduv situatsioon

‘Probleem: Jdudude slisteem, mis eksisteerib antud kontekstis

‘Lahendus: Ruumiline konfiguratsioon, mis lubab diasineril probleemi lahendada
2.2. Gamma kuju

Erich Gamma'l ondisainimallid (kasutab ka terminit mikro-arhitektuurid) kategoriseeritud
(klassifitseeritud):

Loovad mallid
Struktuuri mallid
Kaitumismallid

ja esitatud jargmisel kujul:

Malli nimi ja Klassifikatsioon
Malli nimi annab edasi malli olemust.
Eesmark
LUhike tekst, mis vastab kusimustele:
Mida antud mallteeb?
Mis on pOhimote voi eesmark?
Millist disaini kisimust voi probleemi antud mall lahendab?
Alias
Malli teised tuntud nimed (kui neid on)
Motivatsioon
Stsenaarium, mis illustreerib disaini probleemi ja seda, kuidas malli klassi- ja
objektistruktuurid lahendavad seda probleemi.
Rakendatavus
Situatsioonide kirjeldus, kus antud malli saab rakendada. Millised on halva disaini
naited, mida antud mallparandab ja kuidas neid situatsioone ara tunda.
Struktuur
Mallis osalevate klasside graafiline esitus (OMT notatsioonis). Samutiinteraktsiooni
diagrammid, mis kirjeldavad meetodkutsete jarjestust ja koostddd.
Osalejad
Klassid ja objektid, mis disainis osalevad ning nende Ulesanded.
Koostoo
Kuidas osalejad Uheskoos taidavad oma ulesandeid.
Tagajarjed
Kuidas mall saavutab oma eesmargid? Milline on malli kasutamise hind? Milliseid
susteemi struktuuri aspekte on voimalik séltumatult varieerida?
Realisatsioon
Millised ohud vdivad olla seotud realiseerimisega ja milliseid tehnikaid tuleks
kasutada? Kas ja millised on keelest séltuvad kisimused?
Naitekood
Koodi fragmendid, mis illustreerivad, kuidas malli vdiks realiseerida C++ vo0i
Smalltalk'is.
Teada kasutused
Antud malli naited tegelikes susteemides (vahemalt kaks erinevatest valdkondadest
parit naidet).
Seotud mallid
Millised disainimallid on antud malliga seotud? Millised on tahtsamad erinevused
sarnastest mallidest? Milliseid teisi malle antud mall kasutab?

2.2. Portland'i kuju

Pattern Name: Malli nimi
Aliases: Aliases (or none) Malli teised nimed

Problem

Antud malli poolt lahendatava probleemi kirjeldus. Probleem voib olla esitatud kiisimusena
Context

Probleemi konteksti kirjeldus
Forces

Probleemi ja lahendust mojutavate jdududekirjeldus. See voib olla loetelu

° Esimene jéud

° Teine joud

o

Solution

Probleemi lahenduse kirjeldus
Resulting Context

Lahenduse konteksti kirjeldus
Rationale

Lahenduse taga oleva mottekaigu selgitus
Known Uses

Loetle, kus seda malli on kasutatud
Related Patterns

Antud malliga seotud mallide loetelu vdi kirjeldus
Sketch

Joonis ja joonise kirjeldus

Author(s): Autori nimi

Date: Kuupaev, nait. 3/1/96

Send email to author(s)

Pattern Source: Naide: AG Communication Systems, Writers Workshop, etc.

References

Viidete nimestik

Keywords: Komadega eraldatud loetelu vétmesdnadest

mailto:delanod@agcs.com

Example

Naide malli kasutamisest

2.3. Coad'i kuju

Coad'il on mallid stereotllpsed objektide, vastutuste (responsibilities) ja interaktsioonide
komplektid, mida voib korduvalt analoogiale péhinedes rakendada. Mallide isendid (instances) on

objektmudelite ehituskivideks.
Malle vdib kategoriseerida peredesse:

fundamentaalsed (fundamental)
transaktsioonid (transactions)
litolemid (agregates)

vahendid (devices)
interaktsioonid (interactions)
kombinatsioonid (combinations)

Mallid on esitatud kujul:

#number. "Nimi" tlup kategooria

skeem (Coad'i notatsioon)

kirjeldus

Naide:

#1. Mall "Kogum-Tootaja" (Collection-Worker)

fundamentaalne mall

g ™y . 7
" Colection) C Wiomker A
number numbear
name name
date n 1 Sk
time Py
sistus i
=L I 1= L y

LS _y
hiznoebd iney
bz b uizh
calzOve nifodos re
rankiiote re
ol
Lo A

Kogum-Tootaja on objektmudeli fundamentaalne mall

Koik teised objektimudeli mallid on antud malli variatsioonid
Tuupilised objektide vahelised interaktsioonid:

howMany --> calcForMe

howMuch --> calcForMe

calcOverWorkers --> calcForMe

rankWorkers --> rateMe

Teisi markusi

aboutMe -- aitab motelda, milliseid atribuute veel vaja on

calcForMe -- aitab motelda, milliseid konkreetseid arvutusi on vaja teostada
rankMe -- aitab motelda, milliseid jarjestus- ja vordlusteenuseid vaja oleks
rateMe -- aitab mdtelda, milliseid hinnanguteenuseid vaja oleks

Strateegia on tegevuste plaan, mis on ette nahtud teatud eesmargi saavutamiseks.
Strateegiad jaotuvad nelja pdhikategooriasse:

susteemi eesmarkide ja omaduste identifitseerimine
objektide valimine

vastutuste kindlaksmaaramine

dunaamika valjato6tamine stsenaariumite abil

Strateegiad on esitatud kujul:

#number. "Nimi" tlup kategooria

kirjeldus

Naide:

#1. Strateegia "Neli Pohilist Tegevust, Neli Pohilist Komponent"
peamised tegevused ja komponendid

Organiseeri oma td6 nelja pohitegevuse ja nelja péhikomonendi Gmber

Neli pohitegevust: Identifitseeri eesmargid (purpose) ja omadused (features), vali objektid,
sea paika Ulesanded (responsibilities), toota stsenaariumeid kasutades valja dunaamika
Neli pdhikomponenti: Probleemivaldkond, iniminteraktsioon, andmete haldamine, ststeemi
interaktsioon

2.4. Hiuperklass

Jiri Soukup leiab, et Gammaja Coad'i poolt kirjeldatud mallide probleemiks on, et nad aitavad
disainida tarkvara abstraktsel tasemel aga ei saili realisatsioonis (koodis). Lahenduseks pakub ta
uhe spetsiifilise klassi -- malli klassi (pattern class) voi hiiperklassi lisamist disaini. See klass oleks
sdber (friend) koikide klassidega, mis moodustavad malli ja ta sisaldaks malli kogu liidest
(rakenduse klassides poleks uhtegi malliga seotud meetodit).

HUperklass esitab abstraktsemaid mdisteid, kui tavaline klass tema jaoks on mallid
isenditeks/objektideks.

3. Disainimallide klassifikatsioon

Alexander esitab oma t60s mallide klassifikatsiooni aga mitte nende vaheliste suhete
klassifikatsiooni. Gamma ja teised esitavad hulga hastikirjeldet ja klassifitseerit malle, kuid nende
vahelised suhted pole klassifitseeritud. Nende klassifikatsiooniskeem, mis pdhineb skoobil (klass,
objekt, liitobjekt) ja iseloomustusel (loov, struktuurne, kaitumuslik), on ortogonaalne
siinkirjeldatule.

3.1. Disainimallide klassifikatsiooni skeemid E.Gamma jargi

3.1.1. Loovad disainimallid

Loovad disainimallid abstraheerivad isendite loomise protsessi (instantiation). Sellega aitavad nad
teha tarkvarasusteemi soltumatuks sellest, kuidas objekte luuakse, Ghendatakseja kujutatakse.
Klassi loovad disainimallid kasutavad parimist et varieerida klassi, mille isendeid luuakse, aga
objekti loovad disainimallid delegeerivad loomise teisele objektile.

Loovad disainimallid muutuvad tahtsaks, kui susteem areneb rohkem kompositsioonist kui
parimisest soltuvaks. Sellisel juhul siirdub rohk ettemaaratud kaitumiste (behavior) kodeerimisest
vaiksema hulga fundamentaalsete kaitumiste kirjeldamisele, mida saab kombineerida suvaliseks
arvuks keerukamateks kaitumisteks.

Kdik loovad disainimallid kapseldavad teadmise susteemi kuuluvate konkreetsete klasside kohta ja
nendesse klassidesse kuuluvate isendite loomise ja Uhendamiseviisid.

3.1.2. Struktuuri disainimallid

Struktuuri disainimallid tegelevad sellega, kuidas klassid ja objektid moodustavad suuremaid
struktuure. Klassi struktuuri mallid kasutavad parimist liideste voi realisatsioonide
komponeerimiseks (lihtsaim naide on mitmene parivus). Objekti struktuuri disainimallid kirjeldavad
kuidas koostada objekte, et tekiks uus funktsionaalsus. Sellisel juhul osutub vdimalikuks muuta
funktsionaalsust too ajal.

3.1.3. Kaitumise disainimallid

Kaitumise disainimallid tegelevad algoritmide ja objektide vaheliste kohustuste jagamisega.
Kaitumise disainimallid ei kirjelda ainult objektide ja klasside malle vaid samuti nende vahelise
suhtlemise malle. Neid malle iseloomustab keerukas juhtimisvoog, mida on t60 ajal raske jalgida,
selleks juhivad nad tahelepanu juhtimisvoolt viisile, kuidas objektid on Uhendet.

Klassi kaitumise disainimallid kasutavad parimist, et kaitumist klasside vahel jaotada. Objekti
kaitumise disainimallid kasutavad kompositsiooni parimise asemel ja mdned neist naitavad, kuidas
grupp objekte koostoos lahendab lGlesandeid, mida Ukski neist Uksikult vottes ei saaks lahendada.

Eesmark
Loomine Struktuur Kaitumine
Skoop Klass Tehasmeetod Adapter (klass) Interpretaator
Naidismeetod
Objekt Abstraktne Tehas Adapter (objekt) Vastutuse Jada
Ehitaja Sild Kask
Protottdp Liitobjekt Iteraator
Uksik Dekoraator Vahendaja
Fassaad Momentvote
Karbeskaallane Vaatleja
Asemik Olek

Strateegia
Kilastaja

3.2. Disainimallide klassifikatsiooni skeemid W. Zimmer'i jargi

Nagu eespool Uteldud peab iga mallide stisteem sisaldama klassifikatsiooni skeemi. Maistlik
kategooriate hulk mallide klassifitseerimisel aitab kasutajat leida vajalikud mallid. Iga kategooria
peab esitama selget kriteeriumit voi disaini teemat, mis mangibtahtsat rolli tarkvara arenduses.
VBib eristada jargnevaid kolme kategooriat.

3.2.1. Granulaarsus

Tarkvarasusteemi valjatdodtamine nduab tegutsemist erinevatel abstraktsioonitasemetel.
Granulaarsust voib maaratleda:

-Arhitektuurilised raamistikud: Iga tarkvaraarhitektuur on ehitet vastavalt Gldisele
struktureerimise pdhimottele. Neid pohimotteid kirjeldavad arhitektuurilised raamistikud
(architectural frameworks):

Arhitektuuriline raamistik esitab péhiméttelist vormide kogu (paradgmat)
tarkvarasusteemide struktureerimiseks. Ta annab ettemaaratud alamsusteemide hulga ja
reeglid suhete loomiseks nende vahel.

Arhitektuurilised raamistikud on kui naidised konkreetsetele tarkvara arhitektuuridele, nad
maaravad susteemi struktuuri ja mojutavad alamsusteemide arhitektuuri. Seega lubavad
arhitektuurilised raamistikud hallata struktuurset keerukust tarkvarasusteemides. Mingi
kindla arhitektuurilise raamistiku valik tarkvarasisteemi jaoks on fundamentaalne disaini
otsus.

Naide: MudelVaade-Kontroller.

-Disainimallid: Tarkvara arhitektuur koosneb tavaliselt mitmetest vaiksematest arhitektuuri
uhikutest, neid kirjeldavad mallid.

Disaini mall kirjeldab tarkvara arhitektuuri alamsusteemide ja komponentide
struktureerimise pbhiskeemi, ja nende vahelisi suhteid. Ta identifitseerib, nimetab ja
abstraheerib Uldist disainipbhimétet, kirjeldades tema erinevaid osi ja nende koost6ddning
ulesandeid [Gamma].

Disaini malle vdib vaadelda mikroarhitektuuridena, disaini mall on vaiksem, kui terviklik
tarkvara arhitektuur vdi arhitektuuriline raamistik.

Disaini mall vdib olla seotud teiste disainimallidega ja koosneda mitmest vaiksemast mallist.
Naide: Mediaator.

‘Idioomid: Idioomid tegelevad mingi disaini kisimuse konkreetsete realisatsioonidega.
Idioom kirjeldab, kuidas realiseerida mingit malli osa, osa funktsionaalsust, véi osade
vahelist suhet. Nad on sageli konkreetsest programmeerimiskeelest séltuvad.

ldioomid on madalaima tasememallid, nad on tugevalt seotud mingi kindla
programmeerimiskeelega. Kui sama idioomi eksisteeribki erinevates
programmeerimiskeeltes, on tema kuju erinev.

Naide: Viidete loendamine C++ (see idioom ei oma motet Smalltalk'is, kuna seal on
automaatne prugkoristus (garbage collection)).

3.2.2. Funktsionaalsus

Teine mallide klassifitseerimisekategooria on funktsionaalsus. Iga mall on eeskujuks (template)
konkreetse funktsionaalsuse realiseerimisel. VBib eristada jargnevaid funktsionaalsuse klasse:

‘Objektide loomine (Loomine): Mallid mis kirjeldavad, kuidas luua keerukaid,
rekursiivseid vOi kompleksseid objektide struktuure.
‘Objektide vaheline suhtlemine (Suhtlemine): Mallid mis kirjeldavad, kuidas

organiseerida koos téotavate objektide (mis vdivad olla iseseisvalt valja tootatud voi
hajutatud) hulgas suhtlemist.

-Juurdepaas objektidele (Juurdepaas): Mallid mis kirjeldavad, kuidas kasutada objektide
poolt pakutavaid teenuseid ja paaseda juurde nende olekule ilma kapseldumist rikkumata.
‘Keerukate protsesside organiseerimine: Mallid mis kirjeldavad, kuidas jagada
ulesandeid koos tootavate objektide vahel, et lahendada keerukaid Ulesandeid.

3.2.3. Struktuursed Pohimoétted

Et realiseerida oma funktsionaalsust, toetuvad mallid kindlatele arhitektuurilistele pohimotetele,
mis moodustavad kolmanda kategooria.

-Abstraktsioon (abstraction): Mall vaatleb abstraktselt voi Gldistatult konkreetset (sageli
keerukat) olemit (entity) tarkvaraslisteemis

‘Kapseldumine (encapsulation): Mall kapseldab mingi kindla objekti, komponendi voi
teenuse detailid, et teha tema kiiendid neist sdltumatuteks voi kaitsta neid juurdepaasu
eest.

‘Huvide lahusus (separation of concerns): Mall eristab konkreetsed Ulesanded
(responsibilities) eristatud objektidesse vdi komponentidesse, et konkreetset Gilesannet
(task) lahendada voi konkreetset teenust osutada.

-Seotus ja Kokkukuuluvus (coupling and cohesion):Mall kaotab v6i nérgendab
struktuurseid vai suhlemis seoseid ja sdltuvusi muidu tugevalt seotud objektide vahel.

Iga malli vdib stisteemis klassifitseerida eelpooltoodud kategooriate jargi. Et konkreetses
disainiolukorras klassifikatsioonisusteemi kasutada, tuleb teha jargmist:

Maarata malli nbéutud granulaarsus. Kas mallil pohineb kogu rakendus, alamsusteem voi
komponent, voi konkreetse disainindude realisatsioon..

Valida vajalik funktsionaalsus. Kui on vaja kombineerida mitut funktsionaalsust, tuleb valida
mall, mis annab kbik ndutavad funktsionaalsused ise, voi mallid, mis annavad need
koostoos.

Md&érata soovitavad struktuursed péhimétted. Mall tuleb valida vastavalt antud olukorras
kdige kasulikumale ja tahtsamale struktuursele péhiméttele.

Klassifikatsiooni slisteem pole moeldud dige mall valikuks -- otsuse peab tegemadisainer, aga ta
aitab disainereid otsida antud olukorra jaoks sobivat mali.

Mallid saame jaotada semantiliselt erinevatesse tasemetesse:
Pohilised disainimallid ja tehnikad
Disainimallid tuupiliste tarkvarasusteemides esinevate probleemide lahendamiseks

Rakendusvaldkonnale spetsiifilised disainimallid

Disainimallide jaotamine tasemetesse:

[Lezign Patterns: Specific to 2n Applicaion Domain

Diegign Patterne for Typical Softwere P robiems

.--' __,-'-"'"-'- AY .-.rll
| F'n:-t-:h.-pe] [Factory Method] ;

Beeic Da&i? Pattarne =nd Teil::h niques

[Einglet-::] [Te FI'F'E': Method :l___ _T

terador] [Fhmeight]
=

4. Disainimallide kasutamine objekt-orienteeritud tarkvara disainis
Kuidas valida disainimalli:

Vaadelda, kuidas disainimallid probleemi lahendavad. Uurides, kuidas mallid aitavad leida
vajalike objekte, maarata objektide granulaarsust, kirjeldada objektide liideseid, ja muid
vahendeid, mida mallid kasutavad probleemide lahendamisel, vdib leida oma disaini sobiva
malli.

Lugedes mallide eesmargikirjeldusi. Tuleb leida mall, mille eesmargi kirjeldus on l[ahedaseim
lahendust ndudvale probleemile.

Uurida, kuidas on mallid omavahel seotud. Mallide vaheliste suhete jargimine juhatab katte
vajaliku malli véi mallide rihma.

Vérrelda sarnase otstarbega malle. Kataloog (Gamma) jaotub kolmeks osaks: loovad mallid,
struktuuri mallid ja kaitumismallid.
- Juurelda imberdisainimise pbhjuste Ule.

Mételda, mis peab olema teie disainis muutuv. Keskenduda tuleb muutuva madiste
kapseldamisele.

Kuidas kasutada disaini malli:

Loe mall Iabi, et saada Ulevaadet. Eriti kinnita tahelepanu rakendatavuse ja tagajargede
kirjeldustele, et tagada mallisobivus.

Uuri struktuuri, osalejate kirjeldusi ja koostdo kireldust.
Vaatle naitekoodi. See naitab, kuidas malli oleks dige realiseerida.

Vali nimed mallis osalejatele, mis on sinu rakenduse kontekstis métestatud. Malli kirjelduses

kasutatud osalejate nimed on tavaliselt liialt abstraktsed.

Kirjelda klassid. Kirjelda nende lideseid, parivussuhteid ja isendimuutujaid. Erista
rakenduses olemasolevad klassid, mida mall puudutab ja muuda neid vastavalt.
Kirjelda rakendusele omased nimed mali operatsioonide jaoks.

Realiseeri operatsioonid, et mallis olevaid Ulesandeid (responsibility) ja koostéod
(collaborations) taita.

Smalltalk'i MVC sisaldab mitmeid disaini malle, millest pohilised:

Mudel ja Vaated on lahtiihendet Vaatlejat kasutades
Vaated vdivad olla paigutet Uksteise sisse, mis viitab Liitobjekti kasutamisele
Vaate ja Kontrolleri vaheline suhe vastab Strateegia'le

Esineb ka muid nagu Vaikimisi antava Kontroller'i klassi maarab Tehasmeetod ja Vaatele lubab
lisada elemente Dekoraator

5. Korduvkasutatava tarkvara disainimise peamised probleemid

Kaks kdige laiemalt kasutatud tehnikat funktsionaalsuse taaskasutamiseks objekt-orienteeritud
susteemides on parimine ja objektide kompositsioon. Parimise korral kirjeldatakse Uhe klassi liidest
teise klassi liidese abil, sellist taaskasutamist nimetatakse sageli valge-kasti taaskasutuseks
(viitates nahtavusele). Objektide kompositsioon on altematiiviks parimisele, siin saavutatakse uus
funktsionaalsus objektide liitmisega. Objektide kompositsioon nduab objektidelt hasti maaratletud
liideseid. Seda taaskasutuse stiili nimetatakse musta-kasti taaskasutuseks, kuna objektide
sisemised detailid pole nahtavad.

Mdned olukorrad, mis tekitavad taaskasutamisel imberdisainimist pohjustavaid probleeme, mida
vastavate mallide abil saaks valtida:

Objekti loomisel klassi avalik naitamine. See seob programmi konkreetse liidese asemel
konkreetse realisatsiooniga. Selle valtimiseks tuleb luua objekte kaudselt.

Kasutatavad malid: Abstraktne Tehas, Tehas Meetod, Prototuup.

Séltuvus konkreetsetest operatsioonidest. Naidates konkreetset operatsiooni seotakse
programm slle konkreetse realisatsiooniga.

Kasutatavd mallid: Vastutuse Jada (Chain of Responsibility), Kask.

Séltuvus riistvarast ja tarkvarast. Valised operatsioonisisteemi liidesed ja
rakendusprogrammeerija liidesed (API) on erineva riist- ja tarkvaraplatvomidel erinevad.
Kasutatavd mallid: Abstraktne Tehas, Sild.

Séltuvus objektide esitusest ja realisatsioonist. Kliente, kes teavad, kuidas objekt on ehitet,
salvestet ja leitav, tuleks objekti realisatsiooni muutumisel muuta.

Kasutatavd mallid: Abstraktne Tehas, Sild, Momentvote (Memento), Asemik (Proxy).
Séltuvus konkreetsetest algoritmidest. Algoritme laiendatakse, optimiseeritakse ja
vahetatakse sageli arenduse ja taaskasutuse kaigus. Objekte, mis nendest sdltuvad tuleks
vastavalt muuta.

Kasutatavd mallid: Ehitaja, Iteraator, Strateegia, Naidismeetod (Template Method), Kilastaja
(Visitor).

Tihe side. Klasse, mis on tihedalt seotud (coupled) on raske taaskasutada. Tihe side viib
monoliitsete slsteemide tekkimisele, kus eisaa midagi muuta ilma mitmest klassist aru
saamata ja neid muutmata.

Kasutatavad mallid: Abstraktne Tehas, Sild, Vastutuse Jada, Kask, Fassaad, Vahendaja,
Vaatleja.

Funktsionaalsuse laiendamine parivuse abil. Objekti spetsialiseerimine parimist kasutades
on sageli raske. Iga uus klass lisab koos funktsionaalsusega ka kindla hulga valtimatuid
tegevusi (alustamine, I6petamine, ...), samuti nduab parimise kasutamine paritava klassi
taielikuu tundmist. Parimise kasutamine voib viia plahvatusikule klasside hulga kasvule
(Uhe alamklass tegemine vdib nduda teiste alamklasside tegemist). Objektide
kompositsioon ja delegatsioon pakuvad paindliku alternatiivi parimise kasutamisele
kaitumise muutmisel. Teisest kuljest kompositsiooni laialdane kasutamine raskendab
disainist arusaamist.

Kasutatavd mallid: Sild, Vastutuse Jada, Liitobjekt (Composite), Dekoraator, Vaatleja,
Strateegia.

Vbimatus klasse muuta. Vahel on vaja muuta klass, mida ei saa kas lahtekoodi puudumise
tdttu voi monel muul pdhjusel lihtsalt muuta.

Kasutatavd mallid: Adapter, Dekoraator, Kulastaja.

6. Disainimallide rakendamine praktikas
Probleemid mallide realiseerimisel:

1. Praeguse realiseerimisstiili korral kaovad mallid kodeerimisel. See pdhjustab hilisemaid
probleeme silumisel ja hooldamisel.

2. Mitme malli kooskasutamine pohjustab suure hulga Uksteisest soltuvate klasside teket.

3. Siiani puudub konkreetsete taaskasutatavate mallide teek.

Eelnevast loetelust probleemid 1. ja 2. saab lahendada esitades igat malli erilise klassiga, mida
nimetame Malli klass (ka hlperklass). See klass kapseldab kogu malli kaitumise ja loogika.
Coad'i poolttoodud mallide kasutamise naites:

[Person)
o o T e o i
Saks Transaction
PergsonRok
R
I I
"-F‘rD:Iu-:tDescri:-ti:an' Gakes T ransaction e m) H’ Customer) 'I-El'l'lpb'!,lEE ™
I
<_u j . AR .-'
N’ ReorderBEvent
L _y L -

On kaasatud kuus malli:

[|
: I :
: Jiomm oo . :
Vb TimeAssocistion Ll 1 !
' E ' | EaksTransaction ! E ' E '
i N =
il -----=-- Mmoo l E :
i temDescription V! 1. :
! [I: ! 1
: ' Sakes Transaction rternl by Cuat-:hrner| | Ernplcq.ree| !
1 t Al r
L T T T T g 4 m - - - - = TS -
i § EventLogging NOTTTTTTIIIIILILL tTToTmTTmmmmm

Lisaks rakendusest tulenevatele klassidele tuleks lisada malliklassid, mis omaksid suhteid
rakenduse klassidega (friend), jattes rakenduse klassid Uksteisest sdltumatuks.

7. Raamistikud

Raamistik (framework) on hulk koostdodtavaid klasse, mis moodustavad taaskasutatava disaini
mingisse konkreetsesse klassi kuuluva tarkvara jaoks. Raamistik maarab kogu rakenduse
arhitektuuri, tema jaotumise klassidesse ja objektidesse, tahtsamad kohustused, seega ka kuidas
klassid ning objektid koos todtavad ja juhtimisvoo. Raamistik tahtsustab disaini taaskasutamist
koodi taaskasutamise asemel, ehkki tavaliselt sisaldavad raamistikud konkreetseid klasse, mida
saab koheselt kasutada.

Raamistike erinevused disainimallidest:

Disaini raamistikud on raamistikest abstraktsemad. Raamistike saab kehastada koodis, aga
ainult disaini raamistike naiteid vdib koodis kehastada. Raamistike joud ongi selles, et neid
vOib valmis kodeerida ja seega valmilt taaskasutada. Disainimallid tuleb iga kord uuesti
realiseerida aga nad kirjeldavad eesmarke ja lahenduse hinda ning tagajargi.

Disainimallid on vaiksem arhitektuuriline Ghik, kui raamistikud. Tavalisekt sisaldab raamisti
mitut disaini malli.

Disainimallid on vahem spetsialiseeritud, kui raamistikud. Raamistikel on alati konkreetne
rakendusvaldkond aga disaini malle saab kasutada rakendusvaldkonnast séltumata. Isegi
kui siduda disaini mall mingi konkreetsema valdkonnaga nagi hajussuseemid voi
paralleelprogrammeerimine ei dikteeri nad rakenduse arhitektuuri, nagu raamistikud.

Raamistikud sisaldavad rakendusvaldkonna uldisi abstraktsioone -- nende struktuuri ja
mehhanisme, jattes rakenduse-spetsiifilised struktuurid ja kaitumise rakenduse valjatdotajale.
Raamistike tuupilised esindajad on MacApp, ET++, Interviews, Choices, MFC, ... Raamistik on
korduvalt kasutatav disain, mison esitatud abstraktsete klassidega ja viisiga kuidas nende
klasside isendid koos tootavad.

Raamistik:

sisaldab integreeritud, rakendusvaldkonnast sdltuvat funktsionaalsust (klassiteegi klassid on
tavaliselt valdkonnast séltumatud)
omab t606 ajal juhtimist (klassiteegile baseeruv disain asetab juhtimisvoo rakendusse)

on poolik rakendus (rakenduse Idpetamine toimub parametriseerimisega ja abstraktsete
klasside spetsialiseerimisega)

Raamistiku juhtimisvoog on juhitud tagasikutsete (callback) poolt.

Raamistikele orienteeritud disainimallide pohiline eesmark on kirjeldada raamistikku ja temas
olevaid klasse ilma realisatsiooni paljastamata. \bib sisse viia metamalli mdiste, mis kirjeldab
kuidas séltumata rakendusvaldkonnast koostada raamistike.

Raamistike disainimisel on pdhiliseks printsiibiks kitsa parimisliidese printsiip (narrow inheritance
interface principle) -- Weinand, mis Utleb: 'kaitumine, mis on hajutet Ule mitme meetodi, peab
baseeruma minimaalkel meetodite hulgal, mida peab Ulekirjeldama’. Vastasel juhul peavad
kliendid alamklassides palju meetodeid Ulekirjeldama, et Uhte kaitumist seada.

Mdned rusikareeglid:

Nérk side klasside (nende isendite) vahel -- objektid peaks vahetama nii vahe andmeid kui
voimalik.

Tugev side klassi sees -- ei tohi olla ei meetodeid ega andmeid ilma suheteta; saavutatav
kirjeldades klassiga vaid Uhte abstraktsiooni.

Minimaalne vajalik liides -- tuleb valtida sama teenuse osutamist mitme vaikeste
erinevustega liidese kaudu.

Testitavus -- klassi digsust peab olema wWimalik kontrollida teadmata milises kontekstis
klassi kasutatakse.

Klasside/Objektide liidesed ja suhtlemine

Naidis- ja konksmetodid (Template and Hook methods)

Naidismeetodid kirjeldavad abstraktset kaitumist, Uldist juhtimisvoogu voi objektide vahelisi
suhteid.

Naidismeetodid péhinevad konksmeetoditel, mis vdivad olla abstrakised meetodid.
Keerukad meetodid on naidismeetodid ja nad on realiseeritud konksmeetodite abil.

Klasside/Objektide kompositsioon (Class/Object Composition)

Naidis- ja konksklassid (Template and Hook classes)
Konksklass parametriseerib naidisklassi. Uldiselt vdib naidisklassi ja konksklassi vahel luua sideme:

isendimuutuja abil, mis viitab konksklassile
edastades viite objektile kui meetodi parameetri
globaalse muutujaga, mis viitab konksklassile

8. Disainimallide kataloog

Gamma disainimallide kataloog:

Otstarve Disaini Mall Eesmark

Loomine Abstraktne Tehas (Abstract tekitada liides seotud sdltuvate objektide

(Creational) Factory) loomiseks ilma nende konkreetset klassi
{Komplekt -- Kit} naitamata

Ehitaja (Builder)

eraldada keeruka objekti ehitamine tema
esitusest, et sama ehitusprotsess vdiks luua
erinevaid esitusi

Tehasmeetod (Factory Method)
{Naivkonstruktor -- Virtual
Constructor}

kirjeldada liides objekti loomiseks jattes
alamklassidele voimalus otsustada, millisesse
klassi isend luua

PrototUlp (Prototype)

maarata millised objektid tuleb luua
prototllpse isendi alusel ja luua uued
objektid kopeerides seda isendit

Uksik (Singleton) tagada, et klassil on ainult Uks isend ja anda
talle globaalne juurdepaas
Struktuur Adapter (Adapter) muundada klassiliides selliseks mida ootab
(Structural) {Umbrik -- Wrapper} klient; lubab koos tootada klassidel, millede
liidesed ei sobi
Sild (Bridge) eraldada abstraktsioon oma realisatsioonist
{Kasik/Keha -- Handle/Body} nii, et mélemad voivad iseseisvalt muutuda
Liitobjekt (Composite) lita objekte puustruktuurideks, mis kujutavad
osa-tervik hierarhiaid; lubab klientidel
uksikobjekte ja liitobjekte Uhetaoliselt
kasitleda
Dekoraator (Decorator) lisada dunaamiliselt objektile
{Umbrik -- Wrapper} lisafunktsionaalsust (responsibilities); pakub
paindlikku alternatiivi parimisele
funktsionaalsuse laiendamisel
Fassaad (Facade) pakkuda Uhetaolist liidest tervele liideste
hulgale alamsUsteemis; kirjeldab kérgema
taseme liidese, mis teeb alamsusteemi
kergemini kasutatavaks
Karbeskaallane (Flyweight) kasutada jagamist (sharing) suure hulga
vaikeste objektide effektiivseks
realiseerimiseks
Asemik (Proxy) pakkuda surrogaatobjekti mingi teise objekti
{Surrogaat -- Surrogate} asemel, et kontrollida talle juurdepaasu
Kaitumine Vastutuse Jada (Chain of valtida paringu saatja ja vastuvotja vahelist
(Behavioral) Responsibility) tihedat sidestust (coupling), andes

rohkemale, kui Ghele objektile vdimalus

paringut taita; paigutada vastuvdtjad jadasse
ja anda paringut piki jada edasi kuni leidub
objekt, kes ta taidab

Kask (Command)
{Tegevus, Transaktsioon -- Action,
Transaction}

kapseldada paring kui objekt, lubades
parametriseerida kliente erinevate
paringutega, paigutada paringuid jarjekorda,
pidada paringute kohta logi ja toetada
tUhistatavaid operatsioone

Interpretaator (Interpreter)

kirjeldada antud keele grammatikale esitus
koos interpretaatoriga, mis kasutab seda
esitust

Iterator (Iterator)
{Kursor -- Cursor}

pakkuda jarjestikust juurdepaasu objektide
struktuuri (hulga) elementidele ilma
realisatsiooni paljastamata

Vahendaja (Mediator)
{Haldur -- Manager}

kirjeldada objekt, mis kapseldab hulga teiste
objektide suhtlemise viisi; vahendaja hoiab
objekte Uksteisele viitamast ja lubab nende
vahelist suhtlemist neist s6ltumatult
varieerida

Momentvote (Memento)
{Suveniir? -- Token}

esitada ilma kapseldumist Idhkumata valiselt
objekti sisemine olek, et seda saaks
salvestada ja hilem taastada

Vaatleja (Observer)
{Soltlased, Avalda-Telli --
Dependents, Publish-Subscribe}

maarata uks-mitmele suhe objektide vahel
nii, te kui Uhe objekti olek muutub, kbik
temast sdltuvad objektid saavad teada ja
vOivad end uuendada

Olek (State)

lubab objekti muuta oma kaitumist vastavalt
sisemisele olekule

Strateegia (Strategy)
{Poliitika -- Policy}

maarata algoritmide pere, kapseldada nad ja
muuta vahetatavateks; lubab muuta algoritmi
klientidest séltuvalt

Naidismeetod (Template Method)

maarata algoritmi struktuur (skeleton)
viivitades mingite osade kirjeldust
alamklassideni; lubada alamklassidel
varieerida algoritmi osi

Kllastaja (Visitor)

esitada operatsiooni, mida tuleb rakendada
objektide struktuuri osadele; lubab kirjeldada

uusi operatsioone, muutmata nende
elementide klasse, milledel ta opereerib

Otstarve Disaini Mall Aspektid, mis voivad muutuda

Loomine Abstraktne Tehas (Abstract toodetavate objektide pered
Factory)

(Creational) Ehitaja (Builder) viis, kuidas liitobjekti luuakse

Tehasmeetod (Factory Method) objekti alamklass, millesse isend luuakse

PrototUup (Prototype) objekti klass, millesse isend luuakse
Uksik (Singleton) klassi ainus isend

Struktuur Adapter (Adapter) objekti liides

(Structural) Sild (Bridge) objekti realisatsioon
Liitobjekt (Composite) objekti struktuur la koosteviis
Dekoraator (Decorator) objekti Ulesanded ilma parimiseta
Fassaad (Facade) alamsusteemi liides
Karbeskaallane (Flyweight) objketide maluvajadus
Asemik (Proxy) juurdepaas objektile; objekti asukoht

Kaitumine Vastutuse Jada (Chain of objekt, mis paringu taidab
Responsibility)

(Behavioral) Kask (Command) kus ja kuidas paring taidetakse
Interpretaator (Interpreter) keele grammatika ja semantika
Iterator (/terator) juurdepaas hulga elemertidele ja viis kuidas

hulka labitakse

Vahendaja (Mediator) kuidas ja millised objektid suhtlevad

Momentvodte (Memento) milline sisemine info ja kunas on objektist

valjaspoole salvestatud

Vaatleja (Observer)

objektide hulk, mis s6ltub objektist; viis
kuidas séltuvaid objekte uuendatakse

Olek (State)

objekti olekud

Strateegia (Strategy)

algoritm

Naidismeetod (Template Method)

algoritmi sammud

Kllastaja (Visitor)

operatsioonid, mida rakendatakse
objektidele, ilma nende klasse muutmata

Gamma disainimallide kataloogi uldine struktuur:

Ecth mimis
uzes for itz Can use ath er obje ck
Abetract Factony manage men F kweight ko share Froy bt Prros
ohject le af novdes des nok
change proto
< om peting iz irnplf.:menbtc 5irr:i|ar in aften buikds .) similar, but Bath «
pakterns using constructing an obieck R R Iz 3 Dle o bors oth er
zruckure L~ H shruckure o degenerates am Bt e
d'_:ﬁ':::ﬂ [without recurs by dom
. Fimpte ohET om pos able change
Frototype [F =ctory Method] Builder] inskhance of g e tion”
iz called similar
gimilar with in in pa sing Interprater Deccrator
[indirect acoes s Lem phl:-:.m-:thu-dﬁ shbe L
bo objeck
<an b uges ko it iz
[Singleton] [Terrplste I'u'Ieth:d] o ;:ﬁ‘f;: wses ko im phem <o "br: Eﬂ?nf‘ comman te
iz typicaly e P m fo- have ina
applicd to b*!"’-" o ructure © om man ds
can uge for i a
chang: manage :p-cc.'pli':-:c
abject
H can b ¥ -,
[O Eezruer] [Facade] < ombine te rator] [Cmrna'ld] C hain of
with 3 4 Respons ibility
can _b-e uzed ko Can F_:-:-:F
similar in dec cupling considered 3 capture stte shbe of
collabomtions between cempzand ane ofitertion target
cbjocts incremenkl can b g
M me o organized in

bBothuze o kewe

Stde

of indirzction

Mallid klient/server susteemide tegemiseks mis sisaldavad lideseid vanadesse (legacy)

susteemidesse:

Probleem

Nimi

Lahendus

Erand (Exception)

Ebanormaalsed asjad juhtuvad
tavaliselt kaugel punktist kus
programm peaks antud olukorrale
vastama.

Probleemide maaratlemine klassi
Exception tapsustustena lubab ehitada
tingimuste hierarhiat ja uhendada lahti
probleemi tuvastamist ning lahendamist.

Uksik (Solitaire

Mdnedest objektidest on rakenduses

Uksiku kaks rolli, on tahtsaimad:

(Singleton)) vaid Uks isend. identifikaatorid -- objektide identiteedi
leidmiseks ja
hoidjad -- mingi ressursi haldajad.
Objektid Andmevahetus OO klientide ja Andmetele juurdepaas nihutatakse

Kirjetest (Objects
from Record)

vanade andmebaasisisteemide
vahel on komplitseeritud keeruka
struktuuriga objektmudeli ja lameda
relatsioonilise mudeli vaheliste
erinevuste tottu.

Ariobjektist selleks ettenahtud
Kirjeobjekti (Record object). Ariobjekt
umritseb objekti isendiandmeid esitava
Kirje vajaliku kaitumisega.

Paring (Request)

Klient/Server susteemid kasutavad
erinevaid sideliideseid/-protokolle
andmevahetuseks keskarvuti
rakendustega, millede erinevused
peaksid olema nahtamatud kliendile.

Klient loob Paringu objekti, mis
atomaarselt vahetab hulga sisendkirjeid
hulga valjundkirjete vastu. Seega
kapseldab Paring Ghe serveri
transaktsiooni (toouhiku).

Materialiseerimi
he

Objekt-orienteeritud klient/server
susteemi pohiomaduseks on kliendi

Materialiseerimise mall kasutab Paringu
ja Objektid Kirjetest malle serveri

(Materialization) objektide kujutamine serveris, andmete objektideks muundamiseks,
hoolimata sellest, kas server toetab kasutades proxy vdi ghost'i malli.
objekte voi ei. Lisaks peab kliendi ~ Proxy asub mingi objekti ja tema
rakenduskood olema soltumatu kasutajate vahel, ning naib olevat antud
sellest kujutusest. objekt, viies sisse kaudsuse, mis

maskeerib, millise astmeni antud objekt
on materialiseerunud.

Ghost ei oma kaitumist ja esimese teate
saamisel materialiseerib ta tegeliku
objekti ning "muundub" temaks. Proxy
omab tegeliku objekti liidest ja jaab
tegelikku objekti umbritsema, olles tema
ainuke valine liides.

Lopetamine Rakendustes on sageli vaja midagi Lépetamise malli realiseerimiseks voib

(Finalization) ette votta, kui objekt voi viimane viit kasutada viitade lugemist (reference
objektile eemaldatakse -- naiteks counting).
operatsioonisusteemi ressursid.

Identiteedi Kuna objektid materialiseeritakse Et takistada ariobjektide paljusust,

Haldamine identiteedita kirjetest, vdib rakendus kasutatakse Identiteedi Haldamise malli.

(Identity materialiseerida sama objekti mitu Vastutus lasub abstraktsel klassil Fail

Management) koopiat, mis votavad kasutult ruumi (File). Fail on Uksik, mis haldab

ja lisavad ebajarjekindlate

ariobjektide identiteeti, kindlustades, et

versioonide (inconsistent versions)
tekkimise riski.

kui kaks paringut tagastavad sama
objekti, viitab teine olemasolevale
objektile selle asemel, et luua uus
koopia.

Virtuaalne List
(Mega-Scrolling
(Virual Lists))

Paringu poolt tagastatud objektide
hulk vdib olla liiga suur, et seda
kliendis materialiseerida.

Virtuaalne List piirab tagastatava hulga
suurust. Kui selline piiratud suurusega
alamhulk ei rahulda kasutajat, koostab
Virtuaalne List uue paringu eelneva
alamhulgaga kulgneva alamhulga
saamiseks.

Virtuaalse Listi realisatsioon voib
sisaldada kullalt infot, et iga jargnev
alamhulk oleks serverijaoks uue
transaktsiooni tulemus, vdi toetuda ka
pusivatele ressurssidele serveris, nagu
SQL kursor.

Ariobjektide
Otsing (Searching

Huvipakkuva objekti leidmine on nii
elementaarmne tegevus, et onrisk

Ariobjektide Otsingu vdib objektiseerida
(reify) kirjeldades abstraktse klassi

Observer, MV(C))

kontseptuaalse mudeli -- mudeli
kaitumine osutub seotuks
kasutajaliidese kaitumisega.

for Business seda votta enesestmaistetavana. Otsing. Otsingu klassi kuuluvad objektid

Objects) maaravad otsingukriteeriumi. Fail saab
otsingu protsessis Otsingu objekti kui
parameetri ja tulemuseks on List voi
Uksik objekt. Otsing kasutab Identiteedi
Haldamist.

Soltuvus Ariobjektide ja neid kuvavate ning Esmatddd mudeli objektide ja nende

(Dependency juhtivate vaateobjektide vaadete lahti Ghendamisel tehti 70-

(Model-View, dhendamineon halb, kuna ta teeb ndatel Xerox'i PARC'is MVC (ModelView-

Broadcast, koodi keerukaks ja varjab Controller) malli valjatootamisel.

Tanapaeval on algne MVC triaad liitunud
MV diaadiks. Olles vanim ja OO mall on
teda aegade jooksulkirjeldatud paljude
erinevate nimede all. Kuna seda malli
saab rakendada ka kasutajaliideseta,
nimetame teda Séltuvuseks.

Ariobjektide
Loomine ja
Uuendamine
(Creating and
Updating Business
Objects)

Ariobjektid peavad tekkima ja
muutuma ajas. Need tegevused
saavad alguse kliendis ja peavad
|6puks peegelduma serveris. Need
tegevused muutuvad keerukamaks,
kui objektid s6ltuvad Ukstesest.

Fail kasutab materialiseerimist
muudatuste rakendamiseks
ariobjektidele. Uuendused peavad
levima sOltuvatde objektidele, et ka
need saaksid uueneda, seda saab teha
kasutades malli Séltuvus.

Tehas-meetod

Luues vaateobjekti mudelile, on

Tehas-meetod (Gamma), loob

(Factory Method) parem, kui kliendi kood teem olemasoleva objektiga seotud objekti ja
minimaalselt eeldusi. Uldjuhul ei vabastab oma kliendi vajadusest teada,
tohiks klient teada isegi vaate klassi. milline see objekt peab olema.

Akende Keerukate akende ehitamine iga AknaHoidja klasson Uksik, mis haldab

Hoidmine kord algusest peale vdib olla kallis. kdiki rakenduse aknaid. AknaHoidja vdib

(Window-Keeping) Samuti tekib probleem, kui rakendus suletud aknaid varuks hoida, mitte
soovib avada akent ariobjektile, havitada, et neid jargmise avamisndude
millele on juba aken avatud -- uue korral uuesti kasutada. Samut voib ta
akna loomise asemel peaks juba avatud akna leida ja teiste akende
olemasolev aken koikide peale peale tuua.
tdstetama.

Vaatamine Ariobjektide leidmise ja uuendamise Vaatamine nduab tavaliselt laia

(Viewing) kdrval on rakenduse poolt funktsioonide valikut, mida pakub mingi

noutavatest funktsioonidest puudu
veel vaatamine.

kasutajaliidese tooriistade komplekt.
Lisaks sellele vajab Vaatamine veel
Tehas-meetodi, Sltuvuse, ja Akende
Hoidmise malle eelpoolmainitud
probleemide lahendamiseks.

Klient/Server
Raamistik (A
Client/Server
Framework)

Objekt-orienteeritud klient/server
raamistik, mis on ette nahtud
vanade suurarvutite slsteemidega
suhtlemiseks, peab lubama kasutajal
leida teda huvitavaid objekte, neid
vaadelda ja muuta (voi luua).

Seega on Klien/Server Raamistik
Otsingu, Vaatamise ja
Loomise/Uuendamise mallide kogum.

Klie it Sa ruer

— N T,

Otsing Wizat=mine Loomine &
\‘ ‘/i \A Uu=ndamine
Hertite=di Akende Tehss Sotuorus
Hadd=min= Hoidia mestod
Virtuzsine ,/ \ ¢
Lt | netamine ik i
&

Mater imizearimine

v T

Objektid Paring Py i

kir et / [CXp rcrd

Erand

Coad'i strateegiad ja mallid:

Objektimudeli ehitamise mallid:

- Fundamentaalne mall

- Transaktsiooni mallid
actor-participant, participant-transaction, place-transaction, specific item-transaction,
transaction-transcation line item, transaction-subsequent transaction, transaction line item-
subsequent transaction line item, item-line item, specific item-line item, item-specific item,
associate-other associate, specific item-hierarchical item

Tranzaction Specifichem

[5u bzequentT ransaction) Lh—.-'
Z’L;\. y

Faricipant

ttem Transa:h:ln Line Hem
L y Sub@eq uentT ransaction Line e m
e

- Liitobjektide mallid
container-content, container-container line item, group4imember, assembly-part, compound

part-part, packet-packet component

Containe

r

i ContainarLine rtem-"

CompoundFart A

.‘__"'-
PN PN

-
Pgzembhy i
| —

e
Fart
I

. Plaanide mallid

-

FacketComponent A

plan-step, plan-plan execution, plan execution-step execution, step-step execution, plan-

plan version

-

-

r

Flanersion

FlanExacution h

=

StepExecution h

- Interaktsiooni mallid

peer-pert, proxy-specific item, publisher-subscriber, sender-pass through-receiver, sender-
lookup-receiver, caller-dispatcher-caller back, gategeeper-request-resource

Strateegiad oma strateegiate ja mallide leidmiseks:

#142. Strateegia "Uute Strateegiate avastamine”

avastamine (strateegiad)

voiksid anda teistele, et nad sama lGlesandega hakkama saaksid

- Anallusi igat vaikest sammu, mida sa teed objekmudeli mingi osa ehitamisel, millist ndu

Analllsi igat objektmudeli parandust, millist ndu vdiksid anda teistele, et valtida samu vigu

#143.

Strateegia "Strateegiate tapsustamine”
avastamine (strateegiad)

Kirjelda, mida sa tegid -- sinu strateegia

Rakenda seda mitu korda (kui véimalik, eri valdkondades)
Anna talle nimi ja kategoriseeri ta

Jaga teda teistega -- 6pi nende raktsioonidest

#144.

Strateegia "Strateegiate kirjeldamine"
avastamine (strateegiad)

Lisa kirjeldusse:

- nimi (vahetu siht) ja kategooria

- strateegia ise (kasutades "kuidas teen ..." vormi)
- naited

#145.

Strateegia "Uute Mallide avastamine"
avastamine (mallid)

Uuri igat suhtlevate objektide paari, kolmikut, nelikut (jne.)
Uldista osaliste nimed
Analuusi kas teda saab rakendada teistes valdkondades

#146.

Strateegia "Uute Mallide nimetamine"
avastamine (mallid)

Otsi nime, mis kirjeldab osalisi suhtluses, mida nad tuupiliselt teevad ja teavad
Anna mallile osaliste jargi nimi

- Vaatle sinontume

- Vaatle uldisemaid nimesid

- Vaatle metafoore analoogsetes slisteemides

#147.

Strateegia "Mallide tapsustamine"
avastamine (mallid)

Kirjelda mall

Kasuta teda mitu korda (kui vdimalik, eri valdkondades)

Kategoriseeri mall (transaktsioon, liitobjekt, seade, interaktsioon, kombinatsioon, ...)
Jaga teda teistega -- dpi nende reaktsioonidest

#148.

Strateegia "Mallide kirjeldamine"
avastamine (mallid)

Lisa kirjeldusse:

- nimi ja kategooria

- mall ise -- objektmudeli naidis (template)
- tlUpilised interaktsioonid

- naited

- kombinatsioonid

Kategooria Strateegia Kirjeldus (tolge)

Peamised 1. Neli P6hitegevust, Neli Organiseeri oma t60 nelja
tegevused ja Pohikomponenti pohitegevuse ja nelja
komponendi pohikomonendi Umber

d Neli pohitegevust: Identifitseeri

eesmargid (purpose) ja omadused
(features), vali objektid, sea paika
ulesanded (responsibilities), toota
stsenaariumeid kasutades valja
dunaamika

Neli pdhikomponenti:
Probleemivaldkond,
iniminteraktsioon, andmete
haldamine, stusteemi interaktsioon

Identifitseeri 2. SUsteemi Eesmark 2. System Purpose
eesmargid ja 3. Tod valja peal, Pildid ja Naited 3. Field Trips, Pictures, and Examples
omadused 4. Selgita peamised stressi allikad 4. Identify Major Sources of Stress
5. Toota valja omaduste nimekiri 5. Develop a Features List
6. Nelja liiki omadused 6. Four Kinds of Features
7. Arvutustulemused ja Otsustuspunktid 7. Calculation Results and Decision
8. Parimad ja Halvimad omadused Points
9. Esikimme 8. Best and Worst Features
10. Nuud ja hiljem 9.Top 10
11. Umberehitused piiridel 10. Now and Later
12. Nupukad seadmed 11. Reengineering on the Boundaries
12. Smarter Devices
Vali objektid 13. Vali tegutsejad (actors) 13. Select Actors
(malli 14. Vali osalejad 14. Select Participants
mangijad) 15. Vali kohad 15. Select Places
16. Vali kombatavad asjad 16. Select Tangible Things
17. Vali transaktsioonid 17. Select Transactions
18. Vali liitlased 18. Select Associates
19. Vali elemendid ja konkreetsed 19. Select Items and Specific Items
elemendid 20. Select Interacting Systems and
20. Vali suhtlevad sisteemid ja seadmed Devices
21. Vali objektide kogumid 21. Select Collections of Objects
22. Vali sisaldavad (konteiner-) objektid 22. Select Container Objects
23. Nimeta kogum 23. Select a Collection
24, Kasuta vahimat vdimaliku kogumit 24. Select the Smallest Applicable
Collection
Kirjandus

1. E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, 1994, pp.

395.

2. W. Pree, Design Patterns for Object-Oriented Software Development, 1995, pp. 268.

3. Ed. by J. O. Coplien & D. C. Schmidt, Pattern Languages of Program Design, 1995, pp. 562.
4. P. Coad, D. North, M. Mayfield, Object Models: Strategies, Patterns, & Applications, 1995, pp.
505.

5.). Soukup, Taming C++: Pattem Classes and Persistence for Large Projects, 1994, pp. 416.

