
Modularity

Value and Measure

Alar Raabe

3.3.18 Copyright © Alar Raabe 20182

Content

Introduction
Definitions
Goals

Software Metrics
Measures
Scales

Value of Modularity
Soft Value
Economic Values

Measure of Modularity

Discussion
What to Measure?
How to Proceed?

3.3.18 Copyright © Alar Raabe 20183

Introduction – Definitions
1

System
a collection of interacting components organized to accomplish a

specific function or set of functions within a specific environment

Interface (Connection)
a shared boundary between two functional units, defined by various

characteristics of the functions
component that connects two or more other components for the

purpose of passing information from one to the other

Module (Component)
a logically separable part of a system

Encapsulation
isolating some parts of the system from the rest of the system
a module has an outside that is distinct from its inside (an external

interface and an internal implementation)

3.3.18 Copyright © Alar Raabe 20184

Introduction – Definitions
2

Modularity
the degree to which a system is composed of discrete components

such that a change to one component has minimal impact on other
components

the extent to which a module is like a black box

Coupling
the manner and degree of interdependence between modules
the strength of the relationships between modules
a measure of how closely connected two modules are

Cohesion
the manner and degree to which the tasks performed by a single

module are related to one another
a measure of the strength of association of the elements within a

module

3.3.18 Copyright © Alar Raabe 20185

Introduction – Goals

Design Principles [Meyer]
Few Interfaces – every module should communicate with as few

other modules as possible
Small Interfaces – if two modules communicate at all, then they

should exchange as little information as possible
Explicit Interfaces – when two modules communicate, this fact

must be obvious
Information Hiding – all information about a module should be

private to that module unless it is specifically declared public

Goals
For systems

High modularity
Balanced complexity of modules and overall system
Low coupling of modules

For modules
High cohesion
(High) Encapsulation

3.3.18 Copyright © Alar Raabe 20186

Software Metrics – Measures
1

Line-of-Code (LOC)
LOC is a count of all the code lines (source, blank, and comment)
SLOC is the number of executable code lines

Cyclomatic Complexity [McCabe]
a measure of the complexity of a module's decision structure
the number of linearly independent paths through a module

(indicates of how much effort is required to test a module)

v(G) = Nedges − Nnodes + Nconnected components

Variations
Essential complexity ev(G), measures the degree to which a module

contains unstructured constructs
Design complexity iv(G), measures module's decision structure as it

relates to calls to other modules

3.3.18 Copyright © Alar Raabe 20187

Software Metrics – Measures
2

Software Science [Halstead]
Measurable properties

n1 – number of unique or distinct operators
n2 – number of unique or distinct operands
N1 – number of total usage of all the operators
N2 – number of total usage of all the operands

Calculated properties

n = n1 + n2 – vocabulary
N = N1 + N2 – length (N' = n1log2n1 + n2log2n2)
V = N log2n – volume

I = (2Vn2)/(n1N2) – intelligence content (complexity of algorithm)

3.3.18 Copyright © Alar Raabe 20188

Software Metrics – Measures
3

OO Metrics [Chidamber & Kemerer]
Lack of Cohesion in Methods (LCOM)

LCOM = P – Q if P > Q
 = 0 otherwise

where
P is the number of pairs of methods that do not share instance variables
Q is the number of pairs of methods that share instance variables

Others
Coupling Between Object Classes (CBO)

number of other classes to which it is coupled
Weighted methods per Class (WMC)

sum of the complexities of the methods of a class
Depth of Inheritance Tree of a class (DIT)
Number Of Children of a class (NOC)
Response Set for a class (RFC)

cardinality of the set of methods that can be executed (directly or indirectly)
in response to a message received by an object of that class

3.3.18 Copyright © Alar Raabe 20189

Software Metrics – Measures
4

Function Points [Albrecht]
Counting

external inputs
external outputs
logical internal files
external interface file
external inquiry

Adjusting with
type
complexity
system characteristics (degree of influence 0..5)

data communication, distributed functions, performance, heavily used
configuration, transaction rate, on-line data entry, end user efficiency,
online update, complex processing, reusability, installation ease,
operational ease, multiple sites, facilitate change

FP=[∑i=1

n

Weighti]×[0.650.01×∑
j=1

14

DegreeOfInfuenceOfGSC j]

Simple Average Complex
External Input 3 4 6
External Output 4 5 7
Logical Internal File 7 10 15
External Interface File 5 7 10
External Inquiry 3 4 6

3.3.18 Copyright © Alar Raabe 201810

Software Metrics – Measures
5

Entropy [Allen]
What is the average number of bits needed to describe the

dependencies a program unit has on the rest of the system?

Entropy (Average bits per node)

 H(S) =  1/n (-log2 PL)

where S is a CDG (Code Dependency Graph) and n is the no. of nodes in S

Total amount of information

 I(S) =  -log2 PL

Coupling

 C(S) =  I(Si) – I(S)
where i ranges on number of nodes

3.3.18 Copyright © Alar Raabe 201811

Software Metrics – Scales
1

Coupling (0..7) [Constantine & Yourdon]
Content (high) – one module modifies or relies on the internal

workings of another module
Common – two modules share the same global resource (e.g. data)
External – two modules share an externally imposed data format or

communication protocol
Control – one module is controlling the logic of another, by passing

it information on what to do
Stamp (Data-structured coupling) – modules share a composite data

structure and use only a part of it, possibly a different part (e.g.
passing a whole record to a function which only needs one field of
it)

Data – modules share data through, for example, parameters
Message (low) – modules use a public interface to exchange

parameter-less messages (or events)
No coupling – modules do not communicate at all

3.3.18 Copyright © Alar Raabe 201812

Software Metrics – Scales
2

Cohesion (0..6) [Constantine & Yourdon]
Functional (best) – parts of a module are grouped because they all

contribute to a single well-defined task of the module
Sequential – parts of a module are grouped because the output

from one part is the input to another part like an assembly line
(e.g. a function which reads data from a file and processes the
data)

Communicational – parts of a module are grouped because they
operate on the same data (e.g. a module which operates on the
same record of information)

Procedural – parts of a module are grouped because they always
follow a certain sequence of execution (e.g. a function which
checks file permissions and then opens the file)

Temporal – parts of a module are grouped by when they are
perfromed (e.g. functions performed after an exception)

Logical – parts of a module are grouped because they logically are
categorised to do the same thing (e.g. I/O routines)

Coincidental (worst) – parts of a module are grouped arbitrarily (e.g.
frequently used mathematical functions)

3.3.18 Copyright © Alar Raabe 201813

Value of Modularity – Soft Value

Maintainability
the ease with which a software system or component can be

modified to change (flexibility) or add (extendability) capabilities,
correct faults or defects, improve performance or other attributes,
or adapt to a changed environment

Portability
the ease with which a system or component can be transferred from

one hardware or software environment to another

Reliability
the ability of a system or component to perform its required functions

under stated conditions for a specified period of time

Testability

...

3.3.18 Copyright © Alar Raabe 201814

Value of Modularity – Economic Value
1

Real Option Theory [Baldwin & Clark]
Modularity

is a financial force
accommodates future uncertainty
creates choices that can be exercised in future

Design Structure Matrix – dependency matrix of design parameters

Modular Operators – correspond to options
split, substitute, exclude, augment (add), inversion, porting

Valuation of modularity as Real Options (American call)
Decision trees with probabilities (Markov Processes)
Dynamic programming algorithms
Monte Carlo simulations
...

Value

NPVstrategic = NPVtraditional + Value real options

3.3.18 Copyright © Alar Raabe 201815

Value of Modularity – Economic Value
2

Real Option Theory
Qualitative Design Principles [Sullivan]

If at any time, the expected value of future profits discounted to given
time is at least by value of investment opportunity more than the direct
costs, then commit to the design decision, otherwise do not

If the expected present value of the future profits that would flow from
choice exceeds the direct cost of implementing it, then go ahead and
implement the choice, otherwise implement other choice

If the expected present value of future profits that would flow from
restructuring exceeds the direct cost of restructuring, then go ahead
and restructure, otherwise do not

If the cost to effect a software decision is sufficiently low, then the
benefit of investing to effect it immediately outweighs the benefit of
waiting, so the decision should be made immediately

With other factors, including the static NPV, remaining the same, the
incentive to wait for better information before effecting a design
decision increases with risk (ie, with the spread, in possible benefits)

The incentive to wait before investing increases with the likelihood of
unfavourable future events occurring

All else being equal, the value of the option to delay increases with
variance in future costs

3.3.18 Copyright © Alar Raabe 201816

Measure of Modularity

Augmented Constraint Networks (constraint network)
Design dimensions – variables
Possible choices – values
Logical constraints – relations among decisions
PWDR (pair-wise dependence relation) – two variables are PWD, if change of one causes

change of other

ACN  non-deterministic automaton (Design Automaton) representing change
dynamics within a design space

Modularity Properties
Complexity – #Variables (# of involved design dimensions)
Dependency Density – Density = #PWDR / #Variables (coupling)
Net Options Value –

V = S0 + NOV1 + NOV2 + ... + NOVm

NOVi = maxk{ini1/2Q(ki) – Ci(ni)ki - Zi}

where for module i
ini1/2Q(ki) – expected benefit ( being technical potential, and n complexity)
Ci(ni)ki – cost to run ki experiments
Zi – cost of changing the module

Modular vector
(D’ – D) = <size,density,modifications,now>

3.3.18 Copyright © Alar Raabe 201817

Discussion

What to Measure?

Complexity of overall system – complexity of interconnections of
modules

Complexity of modules
Option value
...

How to Proceed?

Measure should be easily calculated
Measure shoul behave intuitively
...

3.3.18 Copyright © Alar Raabe 201818

Discussion

3.3.18 Copyright © Alar Raabe 201819

Module

Example: Interface Complexity

Interface

Implementation

Small/Simple Interface & Large/Complex Implementation

Module

Interface

Implementation

NB! If other
modules access
directly
database
tables – all
these are part
of interface

3.3.18 Copyright © Alar Raabe 201820

System

Example: Overall Complexity

Balance between system and modules volume/complexity

SystemSystem

3.3.18 Copyright © Alar Raabe 201821

Measuring Modularity

E
1

E
2

E
3

E
4

E
5

System Modular Complexity

Module Complexity

System Overall Complexity

System Modularity

Cmodular=Nmodules
2 Nmoduleconnections

4

Cmodule=Nelements
2 Nconnections

2

Csystem=Nelements
2 Nconnections

2

M= 1

Cmodular
2 C largestmodule

2 Csystem
2

3.3.18 Copyright © Alar Raabe 201822

M
1

Example
1

E
1

E
2

E
3

E
4

E
5

System Modularity = 0.07 (!?!)

Modularity is lowest
Single too complex module

Rank 0

3.3.18 Copyright © Alar Raabe 201823

M
5

M
4

M
3

M
2

M
1

Example
2

E
1

E
2

E
3

E
4

E
5

System Modularity = 0.01

Modularity is lowest
Too many very simple modules

Rank 0

3.3.18 Copyright © Alar Raabe 201824

M
2

M
1

Example
3

E
1

E
2

E
3

E
4

E
5

System Modulrity = 0.03

Modularity is low
Too many interconnections

between modules

Rank 1

3.3.18 Copyright © Alar Raabe 201825

M
3

M
2

M
1

Example
4

E
1

E
2

E
3

E
4

E
5

System Modularity = 0.04

Modularity is low
Too many modules

(interface in own
module) and inter-
connections

Rank 1

I
1

3.3.18 Copyright © Alar Raabe 201826

M
2

M
1

Example
5

E
1

E
2

E
3

E
4

E
5

System Modularity = 0.08

Modularity is normal
Still too many inter-

connections between
modules

Rank 2

I
1

3.3.18 Copyright © Alar Raabe 201827

M
2

M
1

Example
6

E
1

E
2

E
3

E
4

E
5

System Modularity = 0.09

Modularity is highest
Optimal amount of

interconnections
between modules

Rank 3

I
1

3.3.18 Copyright © Alar Raabe 201828

M
2

M
1

Example
7

E
1

E
2

E
3

E
4

E
5

System Modularity = 0.08

Modularity is low
Too many inter-

face elements

Rank 2

I
1

I
2

3.3.18 Copyright © Alar Raabe 201829

Calculations

1 2 3 4 5 6 7
Number of Modules 1 5 2 3 2 2 2
Number of Module Interconnections 0 9 6 5 3 2 1
Number of Elements 5 5 5 6 6 6 7
Number of Element Interconnections 9 0 3 3 5 6 8
Elements in Largest Module 5 1 3 3 3 4 4
Connections in Largest Module 9 0 2 2 3 5 5
Elements in Smallest Module 5 1 2 1 3 2 3
Connections in Smallest Module 9 0 1 0 2 1 3
Modularity (info) ? 23.26 23.26 13.51 14 10.75 14.78 13.19
Modularity of System (info) ? 0 23.26 13.51 14 10.75 14.78 13.19
Modularity of Largest Module (info) ? 23.26 0 4 4 6 11.61 11.61
Complexity (as vector) 14.59 81.31 36.7 26.31 12.81 11.53 12.61
Modularity (as vector) 0.07 0.01 0.03 0.04 0.08 0.09 0.08

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

