
Software Architecture

Short Introduction

Alar Raabe

28.6.09 Copyright © Alar Raabe 20092

Content

• What is Software Architecture
– Design vs. Architecture
– Early Views and Software Architecture as Discipline
– Software Architecture related Concepts and Terminology

• Group Work

• Software Architectural Styles
– Short overview
– Example software architectural style – Dataflow Systems

• Discussion
– Our common language
– Value of architecture for us

Software architecture is what
software architects do

Kent Beck

28.6.09 Copyright © Alar Raabe 20093

Architecture

• Merriam-Webster
– architecture is the art or science of building
– unifying or coherent structure
– the manner in which the components

of the system are organized or integrated

• Wikipedia
– The term architecture (from Greek word αρχιτεκτονική,

pronounced architektonike) can refer to
• a process – the activity of designing and constructing any kind of

system,
• a profession – the role of those persons or machines providing

architectural services, or
• documentation – usually based on drawings, architecture defines

the structure and/or behavior of a system that is to be or has
been constructed

Architecture is
about
➔ Durability
➔ Utility
➔ Beauty

Vitruvius

28.6.09 Copyright © Alar Raabe 20094

Design vs. Architecture

• Design = Plan
– adaptation of means to ends

• Software Design can be viewed on many levels
– design of higher levels is architecture for lower levels

• Booch
– architecture represents the significant design decisions that

shape a system, where significant is measured by cost of change

• Eden
– architectural decisions are

non-local intensional design decisions

All architecture is design but
not all design is architecture

Grady Booch

Non-Local Intensional Architecture
Local Intensional Design
Local Extensional Implementation

28.6.09 Copyright © Alar Raabe 20095

Early Views on Software Architecture

• Turing & Wheeler (1946-50)
– subroutine library (reusability, reliability, unit testing (testability),

multiple versions with different non-functional qualities, ...)

• Brooks & Iverson (1964-69)
– architecture is a conceptual structure
– architecture is the complete and detailed specification of the

user interface

• Dijkstra, Parnas & Jackson (1972-76)
– separation of concerns – isolation, encapsulation, modularization
– program families can be described by a decision trees
– structure influences non-functional 'qualities' of systems
– structure of program is defined by domain structures

Structure Matters!

28.6.09 Copyright © Alar Raabe 20096

Software Architecture as Discipline

• Perry and Wolf (1992)
– a set of architectural (or, if you will, design) elements that have a

particular form (processing, data, and connecting elements)
– the structure of the components of a program/system, their

interrelationships, and principles and guidelines governing their
design and evolution over time

• Garlan and Shaw (1994)
– the organization (structure) of the overall system (incl. gross

organization and global control structure; protocols for
communication, synchronization, and data access; assignment of
functionality to design elements; physical distribution;
composition of design elements; scaling and performance; and
selection among design alternatives)

elements + form/structure + rationale/principles

28.6.09 Copyright © Alar Raabe 20097

Software Architecture as Discipline

• Bass, Clements, Kazman (1997)
– the structure or structures of the system, which comprise

software components, the externally visible properties of those
components, and the relationships among them

• Eden, Kazman (2003)
– strategic design statements (global design constraints like

programming paradigms, architectural styles, component-based
software engineering standards, design principles, and law-
governed regularities)

global design constraints

28.6.09 Copyright © Alar Raabe 20098

Agile Software Architecture

• Beck (1992)
– what the software architects do

• Johnson (...)
– a shared understanding of the system design of the expert

developers working on the project (incl. how the system is
divided into components and how the components interact
through interfaces)

– the decisions that you wish you could get right early in a project

• Fowler (2003)
– a word we use when we want to talk about design but want to

puff it up to make it sound important

the important stuff –
whatever that is

Ralph Johnson

28.6.09 Copyright © Alar Raabe 20099

Software Architecture Standards

• Open Group TOGAF 9 Enterprise Architecture Framework
– a formal description of a system, or a detailed plan of the system

at component level to guide its implementation
– the structure of components, their interrelationships, and the

principles and guidelines governing their design and evolution
over time

• IEEE 1741-2000 | ISO/IEC 42010:2007 Systems and
Software Engineering – Architecture description

– the fundamental conception of a system in its environment
embodied in elements, their relationships to each other and to
the environment, and principles guiding system design and
evolution

 ≠ architectural description

28.6.09 Copyright © Alar Raabe 200910

Architecture Descriptions are for

• Communicating
– the system's architecture throughout its life cycle among the

system's stakeholders, to guide desired and acceptable change

• Planning and Managing
– the activities of system development
– the effective utilization of a system's elements and resources

throughout its life cycle (operations)

• Evaluating
– and comparing of systems architectures in a consistent manner
– completeness, consistency and correctness of requirements
– and verification of a system's implementation for compliance

with its intended architecture

ISO/IEC 42010:2007

28.6.09 Copyright © Alar Raabe 200911

Terms (Glossary)

architecture

architecture decision

architecture description collection of work products used to describe an architecture
architecture model work product from which architecture views are composed
architecture rationale explanation or justification for an architecture decision
architecture view

architecture viewpoint

environment

model correspondence relation on two or more architecture models
stakeholder

purpose {one of system concerns}
system {a conceptual entity defined by its boundaries}
system concern

fundamental conception of a system in its environment embodied
in elements, their relationships to each other and to the
environment, and principles guiding system design and evolution
choice made from among possible options that addresses one or
more architecture-related concerns

work product representing a system from the perspective of
architecture-related concerns
work product establishing the conventions for the construction,
interpretation and use of architecture views
context determining the setting and circumstances of
developmental, technological, business, operational,
organizational, political, regulatory, social and any other
influences upon a system

individual, team, organization, or class thereof, having concerns
with respect to a system

area of interest in a system pertaining to developmental,
technological, business, operational, organizational, political,
regulatory, social, or other influences important to one or moreof
its stakeholders

ISO/IEC 42010:2007

28.6.09 Copyright © Alar Raabe 200912

System and Architecture

Purpose

System Architecture

Stakeholder Architecture
Description

Environment

has

*

situated in

influences

described by

fulfills

has

*

*

*

ISO/IEC 42010:2007

28.6.09 Copyright © Alar Raabe 200913

Architecture Description

System
Concern

System Architecture

Stakeholder Architecture
Description

Architecture
View

has

governs

conforms

composed from

includes

Architecture
Viewpoint

Architecture
Model

Architecture
Rationale

1..*

1..*

has

1..*

0..*

1..*

1..*

conforms

governs

1..*

Model
Correspondence

0..*

relates
2..*

identifies

frames

Architecture
Decision

0..*

0..*
depends

ISO/IEC 42010:2007

is important to
1..*

28.6.09 Copyright © Alar Raabe 200914

Architecture Framework

System
Concern

Stakeholder

Architecture
Framework

Architecture
View

governs

conforms

composed from

Architecture
Viewpoint

Architecture
Model

1..*

1..*

1..*

1..*

1..*

conforms

governs

1..*

Model
Correspondence

0..*

relates2..*

identifies

frames

Model
Correspondence

Rule
0..1

satisfies

ISO/IEC 42010:2007

defines 0..*

defines

is important to
1..*

1..*

28.6.09 Copyright © Alar Raabe 200915

Stakeholders

• users and operators of the system

• acquirers and owners of the system

• suppliers and developers of the system

• builders and maintainers of the system

ISO/IEC 42010:2007

28.6.09 Copyright © Alar Raabe 200916

System Concerns

• the purpose of the system

• the suitability of the architecture for achieving the
system's purposes

• the feasibility of constructing the system

• the potential risks of the system to its stakeholders
throughout its life cycle

• maintainability, deployability, and evolvability of the
system

ISO/IEC 42010:2007

28.6.09 Copyright © Alar Raabe 200917

Architecture Decisions

• decisions regarding architecturally significant requirements

• decisions needing a major investment of effort or time to
make

• decisions affecting key stakeholders or a number of
stakeholders

• decisions needing intricate or non-obvious resoning

• decisions that are highly sensitive to changes

• decisions that could be costly to change

ISO/IEC 42010:2007

28.6.09 Copyright © Alar Raabe 200918

What is (Software) Architecture

• (Software) Architecture is a
– fundamental conception of a (software) system in its
– environment embodied in its
– elements,
– their relationships to each other and to the environment, and
– principles guiding (software) system design and evolution

• (Software) Architecture description is a
– collection of models in correspondence (relations),
– organized into synthetic or projective views (cohesive groups,

defined by viewpoints) according to te concerns addressed

• (Software) System Model
– anything that can be used to answer questions about system

elements that correspond to
system concerns

(e.g. utility, cost, risk, ...)

28.6.09 Copyright © Alar Raabe 200919

Example: Subscription-Based Sensor
Collection Service

– stakeholders
– users, developers, operators

– concerns (by stakeholders)
– ROI (operators)
– timely delivery of sensor data (users)
– understanding of interactions between system elements (developers)

– viewpoints (by concerns)
– financial : cash-flow spreadsheet (ROI)
– operational : timeline diagram (timely delivery of sensor data)
– system : system interface diagram (understanding of interactions between

system elements)

– views (by viewpoints)
– profit spreadsheet & profitability curve (cash-flow spreadsheet)
– timeline diagram (timeline diagram)
– dataflow diagram (system interface diagram)

– view consistency and correspondence rules
– each node in dataflow diagram should appear at least once in timeline diagram

28.6.09 Copyright © Alar Raabe 200920

Group Work: CDI-Hub

– stakeholders

– concerns

– viewpoints

– views

– model correspondence rules

– rationale

– decisions

28.6.09 Copyright © Alar Raabe 200921

Software Architectural Styles

• Different Levels of Commonality: Idioms, Patterns, Styles

• What is a Software Architectural Style

• Examples of Different Software Architectural Styles

28.6.09 Copyright © Alar Raabe 200922

Different Levels: Idioms, Patterns, Styles

• Specific to a (programming) language
– Software Idioms – coding/programming

• describe usage of (programming) language for certain (simple)
problems

– Programming Style – programming
• a consistent set of idioms (e.g. fluent style, functional style)

• (Programming) language independent
– Design Patterns – design

• describe standard solutions to certain common problems

– Architecture Styles – architectural design
• specific vocabulary and rules for architectural design
• defines a class of systems with specific properties
• describes standard solution to a class of problems

reuse of (design) knowledge

28.6.09 Copyright © Alar Raabe 200923

What is a Software Architectural Style

• Characterizes a family of systems that are related by
shared structural and semantic properties

• Defines
– a vocabulary of design elements
– design rules, or constraints (incl. topology)
– semantic interpretation
– analyses that can be performed on systems built in that style

28.6.09 Copyright © Alar Raabe 200924

Examples of Architectural Styles

• Dataflow Systems
– Batch sequential, Pipes and filters

• Call-and-return Systems (explicit calls)
– Main program and subroutines, OO systems, Hierarchical layers

• Independent Components (implicit calls)
– Communicating processes, Event Systems

• Virtual Machines
– Interpreters, Rule-based systems

• Data-Centered Systems (Repositories)
– Databases, Hypertext system, Blackboards

SOA conform to Independent Components

28.6.09 Copyright © Alar Raabe 200925

Benefits of Architectural Style

• Design Reuse
– Well-understood solutions applied to new problems

• Code reuse
– Shared implementations of invariant aspects of a style

• Understandability of system organization
– A phrase such as ‘client-server” conveys a lot of information

• Interoperability
– Supported by style standardization

• Style-specific analysis
– Enabled by the constrained design space

• Visualizations
– Style-specific descriptions matching engineer’s mental models

28.6.09 Copyright © Alar Raabe 200926

Dataflow Systems

Filter 1

Fork Filter 2

Filter 3

Source

Sink 2

Sink 1

Filter 0

• Dataflow Systems – Pipes and Filters
– Components (sources, filters, sinks)
– Connectors (pipes)
– Constraints (is feedback allowed or not, are pipes buffering, ...)
– Theory (Queueing Theory (K. Erlang 1909))

Filter 31 Filter 32

shared nothing!

28.6.09 Copyright © Alar Raabe 200927

Dataflow Systems Advantages (1)

• Modifiability & Reuse (low coupling, encapsulation)
– filters stand alone and can be treated as black boxes
– filters interact with other components in limited ways

• Ease of construction
– systems can be hierarchically composed – higher order filters can

be created from any combination of lower order pipes and filters

• Flexibility
– the construction of the pipe and filter sequence (system

configuration) can often be delayed until runtime (late binding)

28.6.09 Copyright © Alar Raabe 200928

Dataflow Systems Advantages (2)

• Run-time scalability
– because the process performed by the filter is isolated from the

other components in the system, it is easy to run a pipe-and-
filter system on parallel processors

• Understandability/Analyzability
– system behavior is a succession of component behaviors
– support certain analyses (throughput, latency, deadlock)

28.6.09 Copyright © Alar Raabe 200929

Dataflow Systems Disadvantages

• Difficult to create interactive applications
– because the problem is decomposed into sequential steps

• Common data representation
– data has to be represented as the lowest common denominator

(typically byte or character streams)

• Parsing overhead
– if processing must be based on information, every filter may

introduce parsing and unparsing of the data stream

• Unknown memory requirements and deadlock possibility
– if a filter can not produce any output until it has received all of

its input, the filter will require a buffer of unlimited size
– if fixed size buffers are used, the system could deadlock (e.g.

sort filter has this problem)

• Data sharing is difficult

28.6.09 Copyright © Alar Raabe 200930

Dataflow Systems Examples

• Batch systems

• Many compilers

• Unix pipelines

• Spreadsheets

• JDPF (Java Data Processing Framework)

• Apache Camel (?)

28.6.09 Copyright © Alar Raabe 200931

Discussion

28.6.09 Copyright © Alar Raabe 200932

What is/are for us ...

• Concepts of
– (Software) System
– (Software) Architecture
– (Software) Architecture Description

• Value of
– (Software) Architecture
– (Software) Architecture Description

• Most Relevant (Software) Architecture Styles
• Main Stakeholders
• Main System Concerns
• (Software) Architecture Framework

28.6.09 Copyright © Alar Raabe 200933

Conclusion

• Value of (Software) Architecture
– as fundamental conception of (software) system, architecture

allows us to reason (answer questions) about the (software)
system

– as specific architectural styles address certain concerns (cause
certain properties/qualities) of (software) systems, architecture
allows us to address concerns (achieve required properties or
qualities) of (sofware) systems

• Value of Architecture Description
– as document, it provides guidance for constructing and evolving

the (software) system, and allows us to record and communicate
our knowledge and decisions about the (software) system
architecture

– as model, it allows us to reason (answer questions) about the
(software) system architecture

28.6.09 Copyright © Alar Raabe 200934

Thank You!

28.6.09 Copyright © Alar Raabe 200935

Leftovers

• Conway's law (1968)
– organizations which design systems are constrained to produce

designs which are copies of the communication structures of
these organizations

28.6.09 Copyright © Alar Raabe 200936

Definitions
1

• System
– a collection of interacting components organized to accomplish a

specific function or set of functions within a specific environment

• Interface (Connection)
– a shared boundary between two functional units, defined by

various characteristics of the functions
– component that connects two or more other components for the

purpose of passing information from one to the other

• Module (Component)
– a logically separable part of a system

• Encapsulation
– isolating some parts of the system from the rest of the system
– a module has an outside that is distinct from its inside (an

external interface and an internal implementation)

28.6.09 Copyright © Alar Raabe 200937

Definitions
2

• Modularity
– the degree to which a system is composed of discrete

components such that a change to one component has minimal
impact on other components

– the extent to which a module is like a black box

• Coupling
– the manner and degree of interdependence between modules
– the strength of the relationships between modules
– a measure of how closely connected two modules are

• Cohesion
– the manner and degree to which the tasks performed by a single

module are related to one another
– a measure of the strength of association of the elements within a

module

28.6.09 Copyright © Alar Raabe 200938

Definitions
3

• Model
– an interpretation of a theory for which all the axioms of the

theory are true
– a semantically closed abstraction of a system or a complete

description of a system from a particular perspective
– anything that can be used to answer questions about system

• to an observer B, an object M
A
 is a model of an object A to the extent

that B can use M
A
 to answer questions that interest him about A

Marvin Minsky
• M is a model of A with respect to question set Q if and only if M may

be used to answer questions about A in Q within tolerance T
Doug Ross

