
28.6.09 Copyright © Alar Raabe 20091

Software Architecture

Architectural Styles and
Quality Attributes

Alar Raabe

28.6.09 Copyright © Alar Raabe 20092

Content

• Summary from Previous Seminar

• Software Architectural Styles
– Classification of Architectural Styles
– Examples of Different Software Architectural Styles

• Group Work

• Quality Attributes addressed by Software Architecture
– Short overview

• Discussion
– Most relevant architectural styles
– Quality attributes important for us

families of systems are
related by shared structural

and semantic properties

28.6.09 Copyright © Alar Raabe 20093

What is (Software) Architecture

• (Software) Architecture is a
– fundamental conception of a (software) system in its
– environment embodied in its
– elements,
– their relationships to each other and to the environment, and
– principles guiding (software) system design and evolution

• (Software) Architecture description is a
– collection of models in correspondence (relations),
– organized into synthetic or projective views (cohesive groups,

defined by viewpoints) according to te concerns addressed

• (Software) System Model
– anything that can be used to answer questions about system

elements, relationships and
principles that correspond to

system concerns

28.6.09 Copyright © Alar Raabe 20094

Model

• an interpretation of a theory for which all the axioms of
the theory are true

• a semantically closed abstraction of a system or a
complete description of a system from a particular
perspective

• anything that can be used to answer questions about
system

– to an observer B, an object M is a model of an object A to the
extent that B can use M to answer questions that interest him
about A [Marvin Minsky]

– M is a model of A with respect to question set Q if and only if M
may be used to answer questions about A in Q within tolerance T
[Doug Ross]

architecture is a model of system and
architecture description is a model of architecture

28.6.09 Copyright © Alar Raabe 20095

Group Work Results: CDI-Hub

– stakeholders

– concerns

– viewpoints

– views

– model correspondence rules

– rationale

– decisions

28.6.09 Copyright © Alar Raabe 20096

Software Architectural Styles

• What is a Software Architectural Style

• Classification of Architectural Styles

• Benefits of Architectural Style

• Examples of Different Software Architectural Styles
– Dataflow Systems – Pipes and Filters
– Data-Centric Systems (Repositories) – Blackboard
– Independent Components – Service Oriented Architecture
– Complex Styles

28.6.09 Copyright © Alar Raabe 20097

What is a Software Architectural Style

• Characterizes a family/class of system architectures that
are related by shared structural and semantic properties

• Defines
– a vocabulary of design elements
– design rules, or constraints (incl. topology)
– semantic interpretation
– analyses that can be performed on systems built in that style

a coherent package of design decisions

28.6.09 Copyright © Alar Raabe 20098

Classes of Architectural Styles

• Dataflow Systems
– Batch sequential, Pipes and filters

• Call-and-return Systems (explicit calls)
– Main program and subroutines, OO systems, Hierarchical layers

• Independent Components (implicit calls)
– Communicating processes, Event Systems

• Virtual Machines
– Interpreters, Rule-based systems

• Data-Centered Systems (Repositories)
– Databases, Hypertext system, Blackboards

SOA conforms here to
Independent Components

28.6.09 Copyright © Alar Raabe 20099

Classification of Architectural Styles (1)

• Constituenty Parts: Components and Connectors
– Component – unit of software that performs some function at

run-time
– Connector – mechanism that mediates communications

• Control Issues
– Topology – geometric form of control flow (e.g. linear, tree,

acyclic graph, arbitrary)
– Synchronicity – (in)dependence of components' upon each

others' actions
– Binding Time – when identity of partner for control flow is

established

Boxology – Shaw & Clements

28.6.09 Copyright © Alar Raabe 200910

Classification of Architectural Styles (2)

• Data Issues
– Topology – geometric form of data flow
– Continuity – how continuously is new data generated (e.g.

continuously, sporadically (at discrete times))
– Mode – how data is made available (e.g. passed, shared)
– Binding Time – when identity of partner for data flow is

established

• Control/Data Interaction Issues
– Shape – isomorphism of the control flow and data flow shapes
– Directionality – conformance of directions of control and data

flow

• Type of Reasoning

Boxology – Shaw & Clements

28.6.09 Copyright © Alar Raabe 200911

Classification of Architectural Styles

Style Constituent Parts Control Issues Data Issues Control/Data Interaction
Components Connectors Topology Synchronicity Topology Continuity Isomorphic Shapes

Data Flow Architectural Styles

Batch Sequential programs linear sequential linear sporadic yes

Data Flow Network transducers arbitrary asynchronous arbitrary continuous yes
Pipes and Filters filters pipes linear asynchronous linear continuous yes
Call and Return Architectural Styles

procedures proc. calls hierarchical sequential arbitrary sporadic no
Abstract Data Types managers static calls arbitrary sequential arbitrary sporadic yes

Objects managers arbitrary sequential arbitrary sporadic yes

programs calls or RPC star synchronous star sporadic yes
Layered hierarchical any hierarchical sporadic often
Independent Components Architectural Styles
Event Systems processes signals arbitrary asynchronous arbitrary sporadic yes

processes arbitrary arbitrary sporadic possibly
Data Centered Architectural Styles

Repository queries star asynchronous star sporadic possibly

Black-Board star asynchronous star sporadic no

data
batches
data
streams

Main Program /
Subroutines

dynamic
calls

Call-based Client
Server

Communicating
Processes

message
protocols

any but
sequential

memory,
computations
memory,
components

direct
access

Boxology – Shaw & Clements

28.6.09 Copyright © Alar Raabe 200912

Benefits of Architectural Style

• Design Reuse
– Well-understood solutions applied to new problems

• Code Reuse
– Shared implementations of invariant aspects of a style

• Understandability of system organization
– A phrase such as “client-server” conveys a lot of information

• Interoperability
– Supported by style standardization

• Style-Specific Analysis
– Enabled by the constrained design space

• Visualizations
– Style-specific descriptions matching engineer’s mental models

28.6.09 Copyright © Alar Raabe 200913

Examples of Different Software
Architectural Styles

• Dataflow Systems – Pipes and Filters

• Data-Centric Systems (Repositories) – Blackboard

• Independent Components – Service Oriented Architecture

• Complex (Compound) Styles
– REpresentational State Transfer
– Big Ball of Mud (a Null Style?)

28.6.09 Copyright © Alar Raabe 200914

Dataflow Systems

Filter 1

Fork Filter 2

Filter 3

Source

Sink 2

Sink 1

Filter 0

• Dataflow Systems – Pipes and Filters
– Components (sources, filters, sinks)
– Connectors (pipes)
– Constraints (is feedback allowed or not, are pipes buffering, ...)
– Theory (Queueing Theory (K. Erlang 1909))

Filter 31 Filter 32

shared nothing!

28.6.09 Copyright © Alar Raabe 200915

Dataflow Systems Advantages (1)

• Modifiability & Reuse (low coupling, encapsulation)
– filters stand alone and can be treated as black boxes
– filters interact with other components in limited ways

• Ease of construction
– systems can be hierarchically composed – higher order filters can

be created from any combination of lower order pipes and filters

• Flexibility
– the construction of the pipe and filter sequence (system

configuration) can often be delayed until runtime (late binding)

28.6.09 Copyright © Alar Raabe 200916

Dataflow Systems Advantages (2)

• Run-time scalability
– because the process performed by the filter is isolated from the

other components in the system, it is easy to run a pipe-and-
filter system on parallel processors

• Understandability/Analyzability
– system behavior is a succession of component behaviors
– support certain analyses (throughput, latency, deadlock)

28.6.09 Copyright © Alar Raabe 200917

Dataflow Systems Disadvantages

• Difficult to create interactive applications
– because the problem is decomposed into sequential steps

• Common data representation
– data has to be represented as the lowest common denominator

(typically byte or character streams)

• Parsing overhead
– if processing must be based on information, every filter may

introduce parsing and unparsing of the data stream

• Unknown memory requirements and deadlock possibility
– if a filter can not produce any output until it has received all of

its input, the filter will require a buffer of unlimited size
– if fixed size buffers are used, the system could deadlock (e.g.

sort filter has this problem)

• Data sharing is difficult

28.6.09 Copyright © Alar Raabe 200918

Dataflow Systems Examples

• Batch systems

• Many compilers

• Unix pipelines

• Spreadsheets

• JDPF (Java Data Processing Framework)

• Apache Camel (?)

28.6.09 Copyright © Alar Raabe 200919

Data-Centered Systems (Repositories)

• Data-Centered – Blackboard
– Components (knowledge sources, moderator, blackboard)
– Connectors (requests to and/or notifications from blackboard)
– Constraints (transaction consistency)
– Theories (coalgebras, multi-stream interaction machines

(Wegner), coordination theory, transaction theory, ...)

Knowledge
Source 1

Knowledge
Source 2

Knowledge
Source 3

Knowledge
Source 4

Knowledge
Source 5

Knowledge
Source 6

Moderator

Blackboard

shared everything!

28.6.09 Copyright © Alar Raabe 200920

Data-Centered Systems Advantages

• Scalability
– easy to add more knowledge sources
– knowledge sources can run in parallel and are synchronized

through the central repository

• Separation of concerns (problem partitioning)
– each knowledge source performs separate function
– each knowledge source solves part of the problem

• Coupling
– loose coupling between knowledge sources

• Modifiability
– knowledge sources can be modified independently

28.6.09 Copyright © Alar Raabe 200921

Data-Centered Systems Disadvantages

• Coupling
– tight coupling between knowledge sources and blackboard

• Scalability
– blackboard becomes bottleneck with too many knowledge

sources

• Difficult to analyze
– non-deterministic behavior
– system behavior emerges from the behaviors of knowledge

sources

28.6.09 Copyright © Alar Raabe 200922

Data-Centered Systems Examples

• Many expert systems
– Hearsay II (speech recognition system)

• Many language compilers & IDEs

• GBBopen (based on Common Lisp)

• Java Spaces

• Blackboard Event Processor (JVM-based, JavaScript, JRuby)

• Systems with global database

28.6.09 Copyright © Alar Raabe 200923

Independent Components (SOA)

• Independent Components – Service Oriented Architecture
– Components (Providers, Users/Consumers; opt. Bus, Directory)
– Connectors (synchronous and asynchronous calls, messages)
– Constraints (call style)
– Theories (CSP (C.A.R. Hoare), π-calculus (Milner, Parrow), ...)

Service
Provider 2

Service
Provider 1

Service User 2 Service User 3Service User 1

Service
Directory

Service Bus (Broker)

bus and directory are optional!

28.6.09 Copyright © Alar Raabe 200924

About Topologies

Linear Tree

Star (Snowflake)

Bus

What's the difference
between star and bus?

28.6.09 Copyright © Alar Raabe 200925

SOA Advantages

• Coupling
– loose coupling – especially, if asynchronous calls are used

• Interoperability
– service users can transparently call services implemented in

disparate platforms using different languages

• Modifiability
– loose coupling between service users and service providers
– services are self-contained and modular

• Extensibility
– if bus is used, adding new services is easy

• Reliability
– good fault tolerance, if asynchronous calls are used

28.6.09 Copyright © Alar Raabe 200926

SOA Disadvantages

• Performance
– network overhead
– overhead of intermediaries (like service directory)
– message parsing overhead

• Scalability
– limited scalability, if synchronous calls are used

• Security
– difficult to achieve end-to-end security (needs message level

security mechanisms)

• Testability
– more complex – difficult to test

• Reliability
– complex error recovery might be needed

28.6.09 Copyright © Alar Raabe 200927

SOA Examples

• CORBA (IIOP)
– ORB is Bus
– Naming Service is Directory

• DCOM (RPC)

• JINI (RMI)

• Web Services (SOAP, REST)

28.6.09 Copyright © Alar Raabe 200928

Big Ball of Mud

• De-Facto Standard!

• Emerges from
– Throwaway code, Piecemeal growth, Keep it working, Shearing

layers, Sweeping it under the rug

• Forces corresponding to emergence
– time – designing architecture takes time
– cost – designed architecture costs and is long-term investment
– experience and skill – designing architecture requires know-how
– complexity and scale of the problems
– change – predicting future change requires vision and courage
– organization – architecture reflects organization (Conway's law)

Complexity increases rapidly until the it
reaches a level of complexity just beyond
that with which we can comfortably cope

Cunningham

28.6.09 Copyright © Alar Raabe 200929

Advantages of Big Ball of Mud

• Quick to make – Time-to-Market

• Cheap to make – Cost vs. Benefit

• Does not need governance

• Does not need skills

• ...

Mostly business concerns!

28.6.09 Copyright © Alar Raabe 200930

Disadvantages of Big Ball of Mud

• Maintainability
– Difficult to maintain

• Modifiability
– Hard to change

• Testability
– Difficult to test

• ...

28.6.09 Copyright © Alar Raabe 200931

Big Ball of Mud Examples

• ... ?

28.6.09 Copyright © Alar Raabe 200932

REpresentational State Transfer

• Compound Style – Representational State Transfer
– Components

• Data (resources, resource identifiers, representations, representation
metadata, resource metadata, control data)

• Processing (origin servers, gateways, proxies, user agents)

– Connectors (clients, servers, caches, resolvers, tunnels)
– Constraints (data is not encapsulated)
– Theory: Fielding analysis

Origin
Server 1

Origin
Server 2

User Agent 2
Proxy 1

User Agent 1

Gateway 1User Agent 3

CltSvr $

Clt

Svr

Svr

Svr

Clt

Clt Clt

architecture of web!

28.6.09 Copyright © Alar Raabe 200933

Properties of Interest for REST

• Performance
– Network and User-Perceived Performance
– Network Efficiency

• Scalability
• Simplicity
• Modifiability

– Evolvability and Extensibility
– Customizability and Configurability
– Reusability

• Visibility
• Portability
• Reliability

Fielding

28.6.09 Copyright © Alar Raabe 200934

REST Constituents

• Null Style – an empty set of constraints
• Client Server Style (CS)

– separation of concerns, independent evolution

• Stateless Communication
– session state in client – visibility, reliability, scalability

• Cache ($)
– network efficiency

• Uniform Interface (U)
– A constrained set of well defined operations and content types

• Layered System Style (LS)
– hierarchical decomposition, managing complexity

• Code-on-demand (COD) {optional}
– extensibility, simplified clients, but lower visibility

Fielding

system with no
distinguished

boundaries – BBoM?

28.6.09 Copyright © Ala Raabe 200835

REST Derivation by Style Constraints

RR CS LS

replicated separated layered

VM U

$ CSS LCS COD

C$SS LC$SS LCODC$SS REST

programmable
uniform
interface

simple
visible

mobile

reusable

on-demand stateless

cacheable reliable

scalable

shared extensible

multi
org.

intermediate
processing

28.6.09 Copyright © Alar Raabe 200936

REST Advantages

• Simplicity
– Less client code is required for thin client development
– No need for explicit resource discovery mechanism due to

hyperlinking

• Scalability
– Compared with architectures that require stateful servers

• Efficiency
– Caching promotes network efficiency and fast response times

• Evolvability
– Support of document type evolution (such as HTML and XML)

without impacting backward or forward compatibility

• Extensibility
– Allows support for new content types without impacting existing

and legacy content types

28.6.09 Copyright © Alar Raabe 200937

REST Disadvantages

• Limited Functionality
– Selected uniform interface (HTTP) presents technical challenges

for real time asynchronous events to a thin client or browser
based application

• Scalability
– Managing URI Namespace can be cumbersome
– Can impact network performance by encouraging more frequent

client-server requests and responses

• Visibility
– In case code-on-demand is used to extend the client

• Development lacks supporting software tools

28.6.09 Copyright © Alar Raabe 200938

REST Examples

• WWW (World Wide Web)

• CMIP/CMOT (Common Management Information Protocol)

• Amazon (?)

• IBM WebSphere Portal REST API (?)

• ...

28.6.09 Copyright © Alar Raabe 200939

Group Work: CDI-Hub

– relevant architectural styles

– properties of interest

28.6.09 Copyright © Alar Raabe 200940

Quality Attributes of Software

• (Software) Quality
– the totality of characteristics of an entity that bear on its ability

to satisfy stated and implied needs [ISO/IEC 9126]

• (Software) Quality Attribute
– characteristic of software that affects its quality

• Categorization of Software Quality Attributes

– End User's View – Developer's View – Business's View

– Runtime Qualities – Non-Runtime Qualities

– Quality Attributes Specific to the Architecture

28.6.09 Copyright © Alar Raabe 200841

Quality Attributes of Software

• End User's View
– Functionality
– Interoperability
– Security
– Performance (Efficiency)
– Resource Efficiency
– Availability and Reliability
– Recoverability
– Usability

CMU SEI

• Developer's View
– Modifiability
– Portability (Extensibility)
– Reusability
– Integrability
– Testability

• Business's View
– Time To Market
– Cost vs. Benefits
– Projected Life-time
– Targeted Market
– Integration with Legacy
– Roll-out (Roll-back) Schedule

28.6.09 Copyright © Alar Raabe 200942

Discussion

28.6.09 Copyright © Alar Raabe 200943

What is/are for us ...

• Concepts of
– (Software) System
– (Software) Architecture
– (Software) Architecture Description

• Value of
– (Software) Architecture
– (Software) Architecture Description

• Most Relevant (Software) Architecture Styles
• Main Stakeholders
• Main System Concerns
• (Software) Architecture Framework
• (Software) Quality Attributes

28.6.09 Copyright © Alar Raabe 200944

Conclusion

• Value of (Software) Architecture
– as fundamental conception of (software) system, architecture

allows us to reason (answer questions) about the (software)
system

– as specific architectural styles address certain concerns (cause
certain properties/qualities) of (software) systems, architecture
allows us to address concerns (achieve required properties or
qualities) of (sofware) systems

• Value of Architecture Description
– as document, it provides guidance for constructing and evolving

the (software) system, and allows us to record and communicate
our knowledge and decisions about the (software) system
architecture

– as model, it allows us to reason (answer questions) about the
(software) system architecture

28.6.09 Copyright © Alar Raabe 200945

Leftovers

• Conway's law (1968)
– organizations which design systems are constrained to produce

designs which are copies of the communication structures of
these organizations

28.6.09 Copyright © Alar Raabe 200946

Thank You!

28.6.09 Copyright © Alar Raabe 200947

Terms (Glossary)

architecture

architecture decision

architecture description collection of work products used to describe an architecture
architecture model work product from which architecture views are composed
architecture rationale explanation or justification for an architecture decision
architecture view

architecture viewpoint

environment

model correspondence relation on two or more architecture models
stakeholder

purpose {one of system concerns}
system {a conceptual entity defined by its boundaries}
system concern

fundamental conception of a system in its environment embodied
in elements, their relationships to each other and to the
environment, and principles guiding system design and evolution
choice made from among possible options that addresses one or
more architecture-related concerns

work product representing a system from the perspective of
architecture-related concerns
work product establishing the conventions for the construction,
interpretation and use of architecture views
context determining the setting and circumstances of
developmental, technological, business, operational,
organizational, political, regulatory, social and any other
influences upon a system

individual, team, organization, or class thereof, having concerns
with respect to a system

area of interest in a system pertaining to developmental,
technological, business, operational, organizational, political,
regulatory, social, or other influences important to one or moreof
its stakeholders

ISO/IEC 42010:2007

28.6.09 Copyright © Alar Raabe 200948

Definitions
1

• System
– a collection of interacting components organized to accomplish a

specific function or set of functions within a specific environment

• Interface (Connection)
– a shared boundary between two functional units, defined by

various characteristics of the functions
– component that connects two or more other components for the

purpose of passing information from one to the other

• Module (Component)
– a logically separable part of a system

• Encapsulation
– isolating some parts of the system from the rest of the system
– a module has an outside that is distinct from its inside (an

external interface and an internal implementation)

28.6.09 Copyright © Alar Raabe 200949

Definitions
2

• Modularity
– the degree to which a system is composed of discrete

components such that a change to one component has minimal
impact on other components

– the extent to which a module is like a black box

• Coupling
– the manner and degree of interdependence between modules
– the strength of the relationships between modules
– a measure of how closely connected two modules are

• Cohesion
– the manner and degree to which the tasks performed by a single

module are related to one another
– a measure of the strength of association of the elements within a

module

28.6.09 Copyright © Alar Raabe 200950

Definitions
3

• Model
– an interpretation of a theory for which all the axioms of the

theory are true
– a semantically closed abstraction of a system or a complete

description of a system from a particular perspective
– anything that can be used to answer questions about system

• to an observer B, an object M
A
 is a model of an object A to the extent

that B can use M
A
 to answer questions that interest him about A

Marvin Minsky
• M is a model of A with respect to question set Q if and only if M may

be used to answer questions about A in Q within tolerance T
Doug Ross

28.6.09 Copyright © Ala Raabe 200851

Comparing CMU SEI and ISO/IEC
Software Quality Attributes

• Functionality

• Interoperability

• Security

• Availability and Reliability

• Recoverability

• Usability

– Learnability, Memorability, Error
avoidance & handling, Satisfaction

• Performance (Efficiency)

• Resource Efficiency

• Modifiability

• Portability (Extensibility)

– Installability, Replaceability,
Adaptability, Conformance

• Functionality

– Suitability, Accuracy,
Interoperability, Compliance,
Security

• Reliability

– Maturity, Recoverability, Fault
Tolerance

• Usability

– Learnability, Understandability,
Operability

• Efficiency

– Time Behaviour, Resource Behaviour

• Maintainability

– Stability, Analyzability,
Changeability, Testability

• Portability

– Installability, Replaceability,
Adaptability, Conformance

28.6.09 Copyright © Ala Raabe 200852

Questions

• How & who is using design artifacts?
• How to measure the cost and value of design knowledge?
• Who wants to pay for documents?
• Who wants to pay for exploring of various design

alternatives?
• How tests are debugged?
• How to select architectural style?
• How to recover concepts?
• How to measure cost of having (or not having)

architecture?
• How to evaluate the goodness of a method?

