
Software Architecture

A Short Introduction

Alar Raabe

21.10.12 Copyright © Alar Raabe 20122

Alar Raabe

• Over 30 years in IT
– held various roles from programmer to a software architect

• 15 years in insurance and last 5 years in banking domain
– developed model-driven technology for insurance applications product-line

(incl. models, method/process, platform/framework and tools)

– developing/implementing business architecture methods for a banking
group

• Interests
– software engineering (tools and technologies)

– software architectures

– model-driven software development

– industry reference models (e.g. IBM IAA, IFW)

– domain specific languages

21.10.12 Copyright © Alar Raabe 20123

Content

• What is Software Architecture
– Design vs. Architecture, Early Views and Software Architecture

Discipline

– Software Architecture related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

• Software Architectural Styles
– Classification of Software Architectural Styles
– Examples of Different Software Architectural Styles

• Software Quality Attributes
– Categories of Software Quality Attributes
– Quality Attribute Driven Design

• Value of Software Architecture
– How to Evaluate Software Architectural Decisions
– Value of Software Architecture

• Conclusions

Software architecture is what
software architects do

Kent Beck

21.10.12 Copyright © Alar Raabe 20124

Architecture

• Merriam-Webster :: Architecture (n)
– art or science of building
– unifying or coherent form or structure
– manner in which the components of the system are organized and

integrated

• Wikipedia :: Architecture
(Greek: αρχιτεκτονική and Latin: architectura)

– 2012
• the term "architecture" has been adopted to describe the activity of designing any

kind of system, and is commonly used in describing information technology

– 2011
• art and science of designing (buildings and other physical) structures
• style and method of design and construction of (buildings and other physical)

structures

– 2009
• as documentation, usually based on drawings, architecture defines the structure

and/or behavior of a system that is to be or has been constructed

Architecture is about:

 Durability (firmitas)
 Utility (utilitas)
 Beauty (venustas)

Vitruvius
(Rome, 1 BC)

21.10.12 Copyright © Alar Raabe 20125

Design vs. Architecture

• Design = Plan
– adaptation of means (what we have) to ends (what we want)

• Software Design can be viewed on many levels
– design of higher levels is architecture for the lower levels

• Booch
– architecture represents significant design decisions that shape a system,

where significant is measured by cost of change

• Eden
– Architectural decisions and specifications are

• intensional (generic – applicable to many implementations), and
• non-local (applicable to entire system)

All architecture is design but
not all design is architecture

Grady Booch

The Intension/Locality Thesis

Non-Local Intensional Architecture

Local Intensional Design

Local Extensional Implementation

21.10.12 Copyright © Alar Raabe 20126

Early Views on Software Architecture

• Turing & Wheeler (1946-50)
– reuse of program code and modularization – (closed) subroutine
– subroutine library (reusability, reliability, unit testing (testability), multiple

versions with different non-functional qualities, …)

• Iverson & Brooks (1964-69)
– architecture is a conceptual structure
– architecture is the complete and detailed specification of the user

interface (!)

• Dijkstra, Parnas & Jackson (1972-76)
– separation of concerns – isolation, encapsulation, modularization
– program families can be described by a decision trees

– structure influences non-functional ‘qualities’ of system
– structure of program is defined by domain structures

Structure matters !

21.10.12 Copyright © Alar Raabe 20127

Software Architecture as Discipline

• Perry & Wolf (1992)
– Software Architecture = { Elements, Form, Rationale }

• a set of architectural (or, if you will, design) elements that have a particular form
(of three different classes: processing, data, and connecting elements),

• architectural form, consisting of weighted properties and relationships, and
• rationale for various choices made in defining an architecture

• Garlan & Shaw (1994)
– a collection of computational components – or simply components –

together with a description of the interactions between these
components – the connectors

• Bass, Clements, Kazman (1997)
– the structure or structures of the system, which comprise software

components, the externally visible properties of those components, and
the relationships among them

• Eden, Kazman (2003)
– strategic design decisions/statements (global design constraints like

programming paradigms, architectural styles, component-based software
engineering standards, design principles, and law-governed regularities)

elements + form/structure + rationale/principles
 (what) (how) (why)

21.10.12 Copyright © Alar Raabe 20128

Agile and Software Architecture

• Johnson (…)
– a shared understanding of the system design of the expert developers

working on the project (incl. how the system is divided into components
and how the components interact through interfaces)

– the decisions that you wish you could get right early in a project

• Beck (2000)
– Expressed in XP through system metaphor, which “helps everyone to

understand basic elements and their relationships”
– Should be created by first iteration

• Fowler (2003)
– a word we use when we want to talk about design but want to puff it up

to make it sound important

Architecture is the important
stuff – whatever that is

Ralph Johnson

21.10.12 Copyright © Alar Raabe 20129

Software Architecture Standards

• Open Group TOGAF 9 Enterprise Architecture Framework
– a formal description of a system, or a detailed plan of the system at

component level to guide its implementation
– the structure of components, their interrelationships, and the

principles and guidelines governing their design and evolution over
time

• IEEE 1741 | ISO/IEC 42010 Systems and Software Engineering –
Architecture Description

– the fundamental conception of a system in its environment embodied in
elements, their relationships to each other and to the environment, and
principles guiding system design and evolution

– Architecture descriptions are for …
• Communicating among the system’s stakeholders
• Planning and Managing system development and operations
• Evaluating and Comparing systems architectures, and verifying system’s

implementation for compliance with its intended architecture

architecture ≠ architecture description

21.10.12 Copyright © Alar Raabe 201210

System, Architecture and Architecture Description

ISO/IEC 42010

Environment

Stakeholder

System

Purpose

*

*

Architecture
Description

Architecture
influences

situated in

fulfills

has described by

*

1has

Every system has
an architecture !

21.10.12 Copyright © Alar Raabe 201211

Architecture Description – set of Views

ISO/IEC 42010

Architecture
Decision

Stakeholder

System

Architecture-
related Concern

0..*

1..*

Architecture
Description

Architecture

depends

conforms

frames

has described by

*

*has

1..*

1..*

is important to

Architecture
Rationale

Architecture
View

Architecture
Viewpoint

1..*

0..*

0..*1..*

Architecture
Model

Model
Correspondence

1..*

employs

sanctions

composed of

includes

0..*

2..*
relates

1..*

governs

conforms to

offers

1..*

justifies

*

affects

identifies1..*

1..*

identifies

1..*

21.10.12 Copyright © Alar Raabe 201212

Stakeholders & Concerns & Decisions

• Stakeholders
– Users and operators
– Acquirers and owners
– Suppliers, developers, builders and maintainers

• Architecture-related Concerns
– The suitability of the architecture for achieving the system’s purposes
– The feasibility of constructing the system
– The potential risks of the system to its stakeholders throughout its life cycle
– Maintainability, deployability, and evolvability of the system

• Architecture Decisions are decisions
– regarding architecturally significant requirements
– needing a major investment of effort and time
– affecting key stakeholders or a number of stakeholders
– needing intricate or non-obvious reasoning
– that are highly sensitive to changes
– that could be costly to change

ISO/IEC 42010

21.10.12 Copyright © Alar Raabe 201213

Architecture Framework – set of Viewpoints

Stakeholder

Architecture-
related Concern

Architecture
Framework

conforms

frames

1..*

1..*

is important to

Architecture
View

Architecture
Viewpoint

1..*

1..*

Architecture
Model

Model
Correspondence

1..*

defines

governs

composed from

defines

0..*

2..*

relates

1..*

governs

conforms to

1..* identifies

identifies

Model
Correspondence

Rule

0..*

0..1
satisfies

1..*

1..*

ISO/IEC 42010

21.10.12 Copyright © Alar Raabe 201214

Example: Sensor Collection Service

• Purpose (of the System)
– Subscription-based service of providing access to a widely-distributed set of sensors

• Stakeholders
– Users, developers, operators

• Architecture-related Concerns (by Stakeholders)
– ROI (operators)
– Timely delivery of sensor data (users)
– Understanding of interactions between system elements (developers)

• Viewpoints (by Architecture-related Concerns)
– Financial: cash-flow spreadsheet (ROI)
– Operational: time-line diagram (timely delivery of sensor data)
– System: system component diagram (understanding of interactions between system elements)

• View Consistency and Correspondence Rules
– Each node in component diagram should appear at least once in time-line diagram

• Views (by Viewpoints)
– Profit spreadsheet & profitability curve (cash-flow spreadsheet)
– Time-line diagram (time-line diagram)
– Data-flow diagram (system component diagram)

ISO/IEC 42010

21.10.12 Copyright © Alar Raabe 201215

Conclusion – What is Software Architecture

• Software Architecture is a
– fundamental conception of a (software) system in its
– environment embodied in
– elements, their
– relationships to each other and to the environment, and
– principles guiding software system design and evolution

• Software Architecture Description is a
– collection of related (corresponding) models, organized into cohesive

groups of
– synthetic (constructed) or projective (derived) views, defined by

viewpoints according to the related set of concerns (in architecture
framework)

• Software Architecture Model is
– work product that can be used to answer questions about the software

system

– M. Minsky 1968: “to an observer B, an object A* is a model of an object A to the extent that B
can use A* to answer questions that interest him about A”

– IEEE SE VOCAB: an interpretation of a theory for which all the axioms of the theory are true, or
a semantically closed abstraction of a system or a complete description of a system from a
particular perspective

architecture is a model of system
and architecture description is a
model of architecture

21.10.12 Copyright © Alar Raabe 201216

Content

• What is Software Architecture
– Design vs. Architecture, Early Views and Software Architecture

Discipline

– Software Architecture related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

• Software Architectural Styles
– Classification of Software Architectural Styles
– Examples of Different Software Architectural Styles

• Software Quality Attributes
– Categories of Software Quality Attributes
– Quality Attribute Driven Design

• Value of Software Architecture
– How to Evaluate Software Architectural Decisions
– Value of Software Architecture

• Conclusions

Each style provides an abstraction
for the interactions of components,
capturing the essence of a pattern of
interaction

Roy Fielding

21.10.12 Copyright © Alar Raabe 201217

Software Architectural Styles

• Different Architectures – Different Properties

• Different Levels of Commonality: Idioms, Patterns, Styles

• Software Architectural Styles
– What is a Software Architectural Style
– Classification of Architectural Styles

• Examples of Different Software Architectural Styles
– Dataflow Systems – Pipes and Filters
– Data-Centric Systems (Repositories) – Blackboard
– Independent Components – Service Oriented Architecture (SOA)
– Complex (Compound) Style – REST (Representational State Transfer)

• Building a Software Architectural Style

• Emerged Software Architecture

families of system are related by shared
structural and semantic properties

21.10.12 Copyright © Alar Raabe 201218

Different Architectures – Different Properties

Task 1

Task 2

UI

New Task 2.5

Scheduler

Task 3

DB

Task 1

Task 2

UI

New Task 2.5

Scheduler

Task 3

DB

adding new task

21.10.12 Copyright © Alar Raabe 201219

Different Architectures – Different Properties

Task 1

Task 2

UI

Generator

Task 3

DB

Task 1

Task 2

UI

Forecast Task

Task 3

DB

Temp DB

Task 1

Task 2

Task 3

Forecast Task

Generator

Task 1

Task 2

Task 3

adding forecasts of portfolio

21.10.12 Copyright © Alar Raabe 201220

Different Levels of Commonality:
Idioms, Patterns, Styles

• Specific to a (programming) language

– Software Idioms – coding/programming
• describe usage of (programming) language for certain (simple) problems

– Programming Style – programming
• a consistent set of idioms (e.g. fluent style, functional style, …)

• (Programming) language independent

– Design Patterns – design
• describe standard solutions to certain common functional problems

– Architecture Styles – architectural design
• specific vocabulary and rules for architectural design
• define a class of systems with specific properties
• describe standard solution to a class of non-functional problems

reuse of (design) knowledge

21.10.12 Copyright © Alar Raabe 201221

What is a Software Architectural Style

• Characterizes a family/class of system architectures that are related by
shared structural and semantic properties

• Defines
– a vocabulary of design elements
– design rules, or constraints (incl. topology)
– semantic interpretation
– analyses that can be performed on systems built in that style

• Benefits
– Design Reuse – well-understood solutions applied to new problems
– Code Reuse – shared implementations of invariant aspects of a style
– Understandability of System Organization – e.g. meaning of “client-server”
– Interoperability – supported by style standardization
– Style-Specific Analysis – enabled by the constrained design space
– Visualizations – style-specific descriptions matching engineer’s mental

models (e.g. stack diagrams for layers)

a coherent package of pre-made design decisions

21.10.12 Copyright © Alar Raabe 201222

Classification of Architectural Styles

• Constituent Parts: Components and Connectors
– Component – unit of software that performs some function at run-time
– Connector – mechanism that mediates communications

• Control Issues
– Topology – geometric form of control flow (e.g. linear, tree, acyclic graph, arbitrary)
– Synchronicity – (in)dependence of components’ upon each others’ actions
– Binding Time – when identity of partner for control flow is established

• Data Issues
– Topology – geometric form of data flow
– Continuity – new data generation (e.g. continuously, sporadically (at discrete times))
– Mode – how data is made available (e.g. passed, shared)
– Binding Time – when identity of partner for data flow is established

• Control/Data Interaction Issues
– Shape – isomorphism of the control flow and data flow shapes
– Directionality – conformance of directions of control and data flow

• Type of Reasoning

Boxology – Shaw & Clements

21.10.12 Copyright © Alar Raabe 201223

Classes of Architectural Styles

• Data-flow Systems
– Batch sequential, Data Flow Network, Pipes and Filters

• Call-and-return Systems (explicit calls)
– Main programs and subroutines, Abstract Data Types, OO systems,

Client-Server, Layered (hierarchical layers), Three-tier

• Independent Components (implicit calls)
– Communicating processes, Event-driven systems, SOA

• Virtual Machines
– Interpreters, Rule-based systems

• Data-Centered Systems (Repositories)
– Database-centric, Hypertext systems, Blackboards

• Complex (Compound) Styles
– REST, C2 (Chiron-2), …

Boxology – Shaw & Clements

21.10.12 Copyright © Alar Raabe 201224

Data-flow System

• Data-flow Systems – Pipes and Filters (Data Flow Network)
– Components (sources, filters, sinks)
– Connectors (pipes)
– Constraints (is feedback allowed or not, are pipes buffering, …)
– Theory (Queueing Theory (K. Erlang 1909))

• Examples
– Batch systems
– Many compilers
– Unix pipelines
– Spreadsheets
– JDPF (Java Data Processing Framework)
– Signal and Graphic processors

shared nothing !

Source Filter 0

Filter 1

Filter 2

Sink 1

Sink 2

Filter 3

Filter 31 Filter 32

Fork

Example

21.10.12 Copyright © Alar Raabe 201225

Data-flow System – Evaluation

• Advantages
– Modifiability & Reuse (low coupling, encapsulation)

• Filters can be treated as black boxes
– Ease of construction

• System can be hierarchically composed (new higher order filters can be created by combining
lower order pipes and filters, etc.)

– Flexibility
• Construction (system configuration) can often be delayed until runtime (late binding)

– Run-time scalability
• It is easy to run a pipe-and-filter system on parallel processors

– Understandability/Analyzability
• Supports well certain analyses (throughput, latency, deadlock)

• Disadvantages
– Difficult to create interactive applications
– Common data representation

• The lowest common denominator (typically byte or character streams)
– Parsing overhead

• Every filter may introduce parsing and un-parsing of the data stream
– Unknown memory requirements and deadlock possibility (e.g. sort filter has this

problem)

shared nothing !

Example

?

?

21.10.12 Copyright © Alar Raabe 201226

Data-flow System – Evaluation

• Advantages
– Modifiability & Reuse (low coupling, encapsulation)

• Filters can be treated as black boxes
– Ease of construction

• System can be hierarchically composed (new higher order filters can be created by combining
lower order pipes and filters, etc.)

– Flexibility
• Construction (system configuration) can often be delayed until run time (late binding)

– Run-time scalability
• It is easy to run a pipe-and-filter system on parallel processors

– Understandability/Analyzability
• Supports well certain analyses (throughput, latency, deadlock)

• Disadvantages
– Difficult to create interactive applications
– Common data representation

• The lowest common denominator (typically byte or character streams)
– Parsing overhead

• Every filter may introduce parsing and un-parsing of the data stream
– Unknown memory requirements and deadlock possibility (e.g. sort filter has this

problem)

shared nothing !

Example

21.10.12 Copyright © Alar Raabe 201227

Data-Centered Systems (Repositories)

• Data-Centered Systems – Blackboard
– Components (knowledge sources, blackboard; opt. moderator)
– Connectors (requests to and/or notifications from blackboard)
– Constraints (transaction consistency, …)
– Theory (coalgebras, multi-stream interaction machines (Wegner), coordination theory, transaction

theory, …)

• Examples
– Many expert systems (e.g. Hearsay II)
– Many language compilers and IDEs
– Systems with global database
– GBBopen (based on Common Lisp)
– Java Spaces
– Blackboard Event Processor (JVM-based, JavaScript, Jruby)

shared everything !

Knowledge
Source 1

Knowledge
Source 2

Knowledge
Source 4

Knowledge
Source 5

Moderator

Knowledge
Source 6

Knowledge
Source 3

Blackboard

Example

21.10.12 Copyright © Alar Raabe 201228

Data-Centered Systems (Repositories) – Evaluation

• Advantages
– Scalability

• Easy to add more knowledge sources
• Knowledge sources can run in parallel and are synchronized through the central repository

– Separation of concerns (problem partitioning)
• Each knowledge source performs separate function
• Each knowledge source solves part of the problem

– Coupling
• Loose coupling between knowledge sources

– Modifiability
• Knowledge sources can be modified independently

• Disadvantages
– Scalability

• Blackboard becomes bottleneck with too many knowledge sources
– Coupling

• Tight coupling between knowledge sources and blackboard
– Understandability/Analyzability

• Difficult to analyze – non-deterministic behavior
• System behavior emerges from the behaviors of knowledge sources

shared everything !

Example

?

?

21.10.12 Copyright © Alar Raabe 201229

Data-Centered Systems (Repositories) – Evaluation

• Advantages
– Scalability

• Easy to add more knowledge sources
• Knowledge sources can run in parallel and are synchronized through the central repository

– Separation of concerns (problem partitioning)
• Each knowledge source performs separate function
• Each knowledge source solves part of the problem

– Coupling
• Loose coupling between knowledge sources

– Modifiability
• Knowledge sources can be modified independently

• Disadvantages
– Scalability

• Blackboard becomes bottleneck with too many knowledge sources
– Coupling

• Tight coupling between knowledge sources and blackboard
– Understandability/Analyzability

• Difficult to analyze – non-deterministic behavior
• System behavior emerges from the behaviors of knowledge sources

shared everything !

Example

21.10.12 Copyright © Alar Raabe 201230

Independent Components (SOA)

• Independent Components – Service-Oriented Architecture (SOA)
– Components (providers, users/consumers; opt. bus, directory)
– Connectors (synchronous and asynchronous calls, messages)
– Constraints (call style, …)
– Theory (CSP (C.A.R. Hoare), π-calculus (Millner, Parrow), …)

• Examples
– CORBA (IIOP)

• ORB is bus
• Naming Service is directory

– DCOM (RPC)
– Jini (RMI) – LUS as directory
– Web Services (HTTP) – UDDI as directory
– ESB (Mule, Apache ServiceMix)

bus and directory are optional !

Service User 1 Service User 2

Service
Provider 1

Service
Provider 2

Service
Provider 3

Service User 3

Service
DirectoryService Bus (Broker)

Example

21.10.12 Copyright © Alar Raabe 201231

Independent Components (SOA) – Evaluation

• Advantages
– Coupling

• Loose coupling – specially, if asynchronous calls are used
– Interoperability

• Service users can transparently call services implemented in disparate platforms using different
languages

– Modifiability
• Loose coupling between service users and service providers
• Services are self-contained and modular

– Extensibility (adding new services is easy if bus is used)
– Reliability (good fault tolerance, if asynchronous calls are used)

• Disadvantages
– Performance

• Network overhead
• Overhead of intermediaries (like bus and service directory)
• Message parsing overhead

– Scalability (limited scalability, if synchronous calls are used)
– Security (difficult to achieve end-to-end security – needs message level security

mechanisms)
– Testability (more complex – difficult to test)
– Reliability (complex error recovery needed)

bus and directory are optional !

Example

?

?

21.10.12 Copyright © Alar Raabe 201232

Independent Components (SOA) – Evaluation

• Advantages
– Coupling

• Loose coupling – specially, if asynchronous calls are used
– Interoperability

• Service users can transparently call services implemented in disparate platforms using different
languages

– Modifiability
• Loose coupling between service users and service providers
• Services are self-contained and modular

– Extensibility (adding new services is easy if bus is used)
– Reliability (good fault tolerance, if asynchronous calls are used)

• Disadvantages
– Performance

• Network overhead
• Overhead of intermediaries (like bus and service directory)
• Message parsing overhead

– Scalability (limited scalability, if synchronous calls are used)
– Security (difficult to achieve end-to-end security – needs message level security

mechanisms)
– Testability (more complex – difficult to test)
– Reliability (complex error recovery needed)

bus and directory are optional !

Example

21.10.12 Copyright © Alar Raabe 201233

Compound Style (REST)

• Compound Style – REpresentational State Transfer (REST)
– Components

• Data (resources, resource identifiers, representations, representation metadata, resource metadata, control
data)

• Processing (origin servers, gateways, proxies, user agents)
– Connectors (clients, servers, caches, resolvers, tunnels)
– Constraints (data is not encapsulated, …)
– Theory (Fielding analysis)

• Examples
– WWW (World Wide Web)
– Twitter, Yahoo, Amazon S3 API
– CMIP/CMOT (Common Management Information Protocol)
– IBM WebSphere Portal REST API

architecture of web !

Origin Server 1Server

User Agent 3 Client

User Agent 1 Proxy 1

User Agent 2

Client

Client

Server Cache Client

Origin Server 2ServerGateway 1

Server Client

Origin Server 3Server

Example

21.10.12 Copyright © Alar Raabe 201234

Compound Style (REST) –
Evaluation

• Advantages
– Simplicity

• No need for explicit resource discovery mechanism due to hyper-linking
– Scalability (compared with architectures that require stateful servers)
– Efficiency

• Caching promotes network efficiency and fast response times
– Evolvability

• Support of document type evolution (such as HTML and XML) without impacting backward or
forward compatibility

– Extensibility
• Allows support for new content types without impacting existing and legacy content types

• Disadvantages
– Limited functionality

• Selected uniform interface (HTTP) is difficult for handling real time asynchronous events
– Scalability

• Managing URI namespace can be cumbersome
• Can impact network performance by encouraging more frequent client-server requests and

responses
– Visibility (in case code-on-demand is used to extend the client)

architecture of web !

Example

?

?

21.10.12 Copyright © Alar Raabe 201235

Compound Style (REST) –
Evaluation

• Advantages
– Simplicity

• No need for explicit resource discovery mechanism due to hyper-linking
– Scalability (compared with architectures that require stateful servers)
– Efficiency

• Caching promotes network efficiency and fast response times
– Evolvability

• Support of document type evolution (such as HTML and XML) without impacting backward or
forward compatibility

– Extensibility
• Allows support for new content types without impacting existing and legacy content types

• Disadvantages
– Limited functionality

• Selected uniform interface (HTTP) is difficult for handling real time asynchronous events
– Scalability

• Managing URI namespace can be cumbersome
• Can impact network performance by encouraging more frequent client-server requests and

responses
– Visibility (in case code-on-demand is used to extend the client)

architecture of web !

Example

21.10.12 Copyright © Alar Raabe 201236

Building a Software Architectural Style – REST

• Desired Properties
– Performance (network and user-perceived performance, and network efficiency)
– Scalability
– Simplicity
– Modifiability (evolvability and extensibility, customizability and configurability, reusability)
– Visibility
– Portability
– Reliability

• Constituent Architecture Styles
– Null Style – an empty set of constraints
– Client-Server Style (CS) – separation of concerns

 modifiability, independent evolution
– Stateless Communication (S) – session state in client

 visibility, reliability, scalability
– Cache ($) – a variant of Replicated Repository (RR)

 network efficiency
– Uniform Interface (U) – a constrained set of well defined operations and content types

 simplicity, portability
– Layered System Style (LS) – hierarchical decomposition, managing complexity

 simplicity, scalability
– {optional} Code-on-Demand (COD) – simplified clients, but lower visibility

 modifiability (extensibility), simplicity

Fielding

21.10.12 Copyright © Alar Raabe 201237

Deriving REST from Constituents

RR CS LS UVM

$ CSS LCS COD

C$SS LC$SS LCODC$SS REST

replicated

on-demand stateless

cacheable reliable shared

scalable multi org. reusable

extensible

simple
visible

uniform interface

programmableseparated
layered

intermediate
processing mobile

Fielding

21.10.12 Copyright © Alar Raabe 201238

Emerged Architecture – Big Ball of Mud !

• Emerges from
– Throwaway code, Piecemeal growth, Keep-it-Working,
– Shearing layers, Sweeping it under the rug

• Forces corresponding to emergence
– Time – designing architecture takes time
– Cost – designed architecture costs and is long-time investment
– Experience and skill – designing architecture requires know-how
– Complexity and scale of the problems
– Change – predicting future change requires vision and courage
– Organization – architecture reflects organization (Conway’s law)

• Advantages
– Quick to make  Time-to-Market
– Cheap to make  Cost vs. Benefit
– Does not need governance – just emerges
– Does not need skills

• Disadvantages
– Maintainability – difficult and costly to maintain
– Modifiability – hard and dangerous to change
– Testability – difficult to test

Complexity increases rapidly
until it reaches a level of
complexity just beyond that
with which we can
comfortably cope

Cunningham

Organizations which design systems
are constrained to produce designs
which are copies of the
communication structures of these
organizations (Conway 1968)?

?

21.10.12 Copyright © Alar Raabe 201239

Emerged Architecture – Big Ball of Mud !

• Emerges from
– Throwaway code, Piecemeal growth, Keep-it-Working,
– Shearing layers, Sweeping it under the rug

• Forces corresponding to emergence
– Time – designing architecture takes time
– Cost – designed architecture costs and is long-time investment
– Experience and skill – designing architecture requires know-how
– Complexity and scale of the problems
– Change – predicting future change requires vision and courage
– Organization – architecture reflects organization (Conway’s law)

• Advantages – mostly business concerns !
– Quick to make  Time-to-Market
– Cheap to make  Cost vs. Benefit
– Does not need governance – just emerges
– Does not need skills

• Disadvantages – mostly IT concerns !
– Maintainability – difficult and costly to maintain
– Modifiability – hard and dangerous to change
– Testability – difficult to test

Complexity increases rapidly
until it reaches a level of
complexity just beyond that
with which we can
comfortably cope

Cunningham

Organizations, which design
systems, are constrained to
produce designs, which are
copies of the communication
structures of these organizations
(Conway 1968)

21.10.12 Copyright © Alar Raabe 201240

Content

• What is Software Architecture
– Design vs. Architecture, Early Views and Software Architecture

Discipline

– Software Architecture related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

• Software Architectural Styles
– Classification of Software Architectural Styles
– Examples of Different Software Architectural Styles

• Software Quality Attributes
– Categories of Software Quality Attributes
– Quality Attribute Driven Design

• Value of Software Architecture
– How to Evaluate Software Architectural Decisions
– Value of Software Architecture

• Conclusions

Quality mean doing it right when
no one is looking

Henry Ford

21.10.12 Copyright © Alar Raabe 201241

Software Quality Attributes

• What is Quality

– Quality is fitness for use (J. M. Juran)

• Software Quality

– (Software) Quality is the totality of characteristics of an entity that bear
on its ability to satisfy stated and implied needs (ISO/IEC 9126)

• Software Quality Attribute

– Characteristic of software that affects its quality

architecture is the primary
carrier of quality attributes

–

21.10.12 Copyright © Alar Raabe 201242

Categories of Software Quality Attributes
(Comparing CMU SEI and ISO/IEC 9126)

• CMU SEI
– End User’s View

• Functionality
• Interoperability
• Security
• Performance (Efficiency)
• Resource Efficiency
• Availability and Reliability
• Recoverability
• Usability

– Developer’s View
• Modifiability
• Portability (Extensibility)
• Reusability
• Integrability
• Testability

– Business’s View
• Time-to-Market
• Cost vs. Benefits
• Projected Life-Time
• Targeted Market
• Integration with Legacy
• Roll-out (Roll-back) Schedule

• ISO/IEC 9126
– End User’s View

• Functionality
– Suitability, Accuracy, Interoperability,

Security
• Reliability

– Maturity, Fault Tolerance,
Recoverability

• Usability
– Understandability, Learnability,

Operability, Attractiveness
• Efficiency

– Time Behavior, Resource Utilization

– Developer’s View
• Maintainability

– Analyzability, Changeability, Stability,
Testability

• Portability
– Adaptability, Installability, Co-Existence,

Replaceability

– Business’s View
• ??? MISSING ???

21.10.12 Copyright © Alar Raabe 201243

Quality Attribute Tradeoff Points

you can’t eat your cake and
have it too !

21.10.12 Copyright © Alar Raabe 201244

Architecture-Centric Methods

• A Family of Scenario-Driven and Quality Attribute Driven
Development Methods

– Software Architecture Analysis Method (SAAM)

– Architecture Tradeoff Analysis Method (ATAM)
• To assess the consequences of architectural decision alternatives in light of

quality attribute requirements – uses scenarios

– Quality Attribute Workshop (QAW)
– Cost-benefit Analysis Method (CBAM)
– Active Reviews for Intermediate Design (ARID)
– Attribute-Driven Design (ADD)
– Pedigree Attribute eLicitation Method (PALM)

• To elicit and capture business goals that lie behind the development of software-
intensive system

CMU SEI

21.10.12 Copyright © Alar Raabe 201245

Architecture Tradeoff Analysis Method (ATAM)

• Input
– A set of identified architectural

approaches
– “utility tree” – driving

architectural requirements
– The set of scenarios mapped

onto architecture

• Output
– A set of quality-attribute specific

questions and responses
– A set of identified risks
– A set of identified non-risks
– A set of risk themes that

threaten to undermine the
business goals for the system

CMU SEI

21.10.12 Copyright © Alar Raabe 201246

Example: Travel Agency System Architecture

CMU SEI

21.10.12 Copyright © Alar Raabe 201247

Example: SOA Quality Attribute Scenario
(Modifiability)

Quality Attribute Scenario

… …

Scenario 2
Modifiability

• (Source) Business Analyst/Customer
• (Stimulus) Add a new airline provider that uses its own Web services

interface.
• (Artifact) OPC (Order Processing Center)
• (Environment) Developers have already studied the airline provider interface

definition.
• (Response) New airline provider is added that uses its own Web services.
• (Response Measure) No more than 10 person-days of effort are required for

the implementation (legal and financial agreements are not included).… …

CMU SEI

21.10.12 Copyright © Alar Raabe 201248

Example: SOA Quality Attribute Scenario Analysis

Analysis for Scenario 2

Scenario Summary A new airline provider that uses its own Web services interface is added to the
system in no more than 10 person-days of effort for the implementation.

Business Goal(s) Permit easy integration with new business partners.

Quality Attribute Modifiability, interoperability

Architectural
Approaches and
Reasoning

• Asynchronous SOAP-based Web services
• Interoperability is improved by the use of document-literal SOAP messages for

the communication between OPC and external services.
• Adventure Builder runs on Sun Java System Application Server Platform
• Edition V8.1. This platform implements the WS-I Basic Profile V1.1, so

interoperability issues across platforms are less likely to happen.

Risks The design does not meet the requirement in this scenario, because it assumes
that all external transportation providers implement the same Web
services interface called ‘AirlinePOService’ (as shown in Figure 10 and Figure
11). The design does not support transportation providers that offer their own
service interface.

Tradeoffs The homogenous treatment of all transportation providers in OPC increases
modifiability. However, intermediaries are needed to interact with external
providers that offer heterogeneous service interfaces, as in this scenario.
These intermediaries represent a performance overhead, because they may
require routing messages and extensive XML processing.

CMU SEI

21.10.12 Copyright © Alar Raabe 201249

Content

• What is Software Architecture
– Design vs. Architecture, Early Views and Software Architecture

Discipline

– Software Architecture related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

• Software Architectural Styles
– Classification of Software Architectural Styles
– Examples of Different Software Architectural Styles

• Software Quality Attributes
– Categories of Software Quality Attributes
– Quality Attribute Driven Design

• Value of Software Architecture
– How to Evaluate Software Architectural Decisions
– Value of Software Architecture

• Conclusions

It is not about bits, bytes and
protocols, but profits, losses and
margins

Lou Gerstner

21.10.12 Copyright © Alar Raabe 201250

Value of Software Architecture

Value of Architecture (Description)

• Users and operators of the system
– Understand the external system behavior
– Understand how to operate system

• Acquirers and owners of the system
– Understand economical issues connected

to the system

• Suppliers and developers of the system
– Plan development and construction
– Estimate system properties

• Builders and maintainers of the system
– Understand the system internals

Value that Architecture provides

• Users and operators of the system
– High availability and performance
– Survival from partial failure

• Acquirers and owners of the system
– Easy integration into environment

• Suppliers and developers of the system
– Speed and freedom
– Guidance
– Reuse of effort, skills and know-how
– Ease of integration

• Builders and maintainers of the system
– Survival of extension, adaptation,

requirements changes, platform changes,
etc.

80% of time during
maintenance is spent in
design-rediscovery

Davidson, 2002

21.10.12 Copyright © Alar Raabe 201251

Measuring Value of Software Architecture

• Value of Software Architecture
– Cost of realization of risks compared to cost of architecture

• Value of Software Architecture Description
– Cost of performing activities without architecture description compared to

cost of documenting architecture

valuearch=∑
i=1

n

cost risk concerni −costarch

valuearch .desc=∑
i=1

n

cost performingactivity i−cost arch. desc

Focus on quality and cost will decrease
Focus on costs and quality will decrease

W. E. Deming

21.10.12 Copyright © Alar Raabe 201252

Real Options for Valuation of Software Architecture

• Applicable when
– there is Uncertainty
– there is Business Change
– New Information should/could be exploited when it comes available
– Action today should create

• Possibility of future design choices
• Possibility of future value

• Strategic Value with Real Options

• Valuation of real options
– Binomial lattices (decision trees with probabilities) & Markov processes
– Monte Carlo simulations

• Qualitative Design Principles (Sullivan)
– If the cost to effect a software architecture decision is sufficiently low, then the benefit

of investing to effect it immediately outweighs the benefit of waiting, so the decision
should be made immediately

– All else being equal, the value of the option to delay software architecture decision
increases with variance in future costs (risk)

NPV strategic=NPV traditionalValue real. options

Real option

• is a right (opportunity), but not an obligation
to make a decision in the future

• might be exercised multiple times (different
from financial option)

21.10.12 Copyright © Alar Raabe 201253

What Changes in Business and How Often ?

Channels

Products &
Offerings

Business
Processes

Business
Rules

Your
System(s)

Customer
Segments

Open value network

New channels
Segment specific
offerings and
packaging

Unified business
processes

Business process
optimization

Flexible product
packaging

Product
consolidation

Regulatory changes and
better risk management

New regulations

21.10.12 Copyright © Alar Raabe 201254

Your System(s)

Make it Easy to Change – Make it Explicit !

Products &
Offerings

Business
Processes

Business
Rules

Customer
Segments Channels

21.10.12 Copyright © Alar Raabe 201255

Content

• What is Software Architecture
– Design vs. Architecture, Early Views and Software Architecture

Discipline

– Software Architecture related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

• Software Architectural Styles
– Classification of Software Architectural Styles
– Examples of Different Software Architectural Styles

• Software Quality Attributes
– Categories of Software Quality Attributes
– Quality Attribute Driven Design

• Value of Software Architecture
– How to Evaluate Software Architectural Decisions
– Value of Software Architecture

• Conclusions

38. The architect concerns himself
with the depth and not the surface,
with the fruit and not the flower.

Lao Tsu by Philippe Kruchten

21.10.12 Copyright © Alar Raabe 201256

Conclusions
1

• Value of (Software) Architecture
– As fundamental conception of (software) system, architecture allows us

to reason (answer questions) about the (software) system
– As specific architectural styles address certain concerns (cause certain

properties/qualities) of (software) systems, architecture allows us to
address concerns (achieve required properties or qualities) of (software)
systems

• Value of Architecture Description
– As document, it provides guidance for constructing and evolving the

(software) system, and allows us to record and communicate our
knowledge and decisions about the (software) system architecture

– As model, it allows us to reason (answer questions) about the (software)
system architecture

• Economic Value of Architecture
– Architecture creates choices/options, which have value – designing and

building an architecture is an investment activity

not documenting, but
understanding !

21.10.12 Copyright © Alar Raabe 201257

Conclusions
2

• Have rationale for your architecture
– Connect your architecture descriptions (especially decisions) to the

business goals and requirements

• Speak business language
– Show the value (payback) of investments into architecture

• Gather data from development and operation
– You will need this data to build a business case for architecture (to show

the value of architecture)

• Find out from business
– What will (or could) change
– How probable and how frequent is the change

• Separate what will change from what will not, and group together
things that change with same rate

find out who are your
business counter-parties

and communicate !

21.10.12 Copyright © Alar Raabe 201258

Extra: Smart-phone Architectures

Application
Processor
(CPU)

RAM

RAM
Digital
Baseband
Processor
(Radio)

do you know which one ?
do you care? who cares ?

Application
Processor
(CPU)

RAM

Digital
Baseband
Processor
(Radio)

21.10.12 Copyright © Alar Raabe 201259

Thank You!

17. The architect doesn't talk, she
acts. When this is done, the team
says, "Amazing: we did it, all by
ourselves!"

Lao Tsu by Philippe Kruchten

21.10.12 Copyright © Alar Raabe 201260

Terms (Glossary)

Term Definition

architecture fundamental conception of a system in its environment embodied in elements, their relationships to
each other and to the environment, and principles guiding system design and evolution

architecture decision choice made from among possible options that addresses one or more architecture-related concerns

architecture description collection of work products used to describe an architecture

architecture model work product from which architecture views are composed

architecture rationale explanation or justification for an architecture decision

architecture view work product representing a system from the perspective of architecture-related concerns

architecture viewpoint work product establishing the conventions for the construction, interpretation and use of architecture
views

architecture-related
concern

area of interest in a system pertaining to developmental, technological, business, operational,
organizational, political, regulatory, social, or other influences important to one or more of its
stakeholders

environment context determining the setting and circumstances of developmental, technological, business,
operational, organizational, political, regulatory, social and any other influences upon a system

model correspondence relation on two or more architecture models

stakeholder individual, team, organization, or class thereof, having concerns with respect to a system

purpose {one of system concerns}

system {a conceptual entity defined by its boundaries}

ISO/IEC 42010

21.10.12 Copyright © Alar Raabe 201261

Classification of Architectural Styles

Style Constituent Parts Control Issues Data Issues Control/Data Interaction
Components Connectors Topology Synchronicity Topology Continuity Isomorphic Shapes

Data Flow Architectural Styles

Batch Sequential programs linear sequential linear sporadic yes

Data Flow Network transducers arbitrary asynchronous arbitrary continuous yes
Pipes and Filters filters pipes linear asynchronous linear continuous yes
Call and Return Architectural Styles

procedures proc. calls hierarchical sequential arbitrary sporadic no
Abstract Data Types managers static calls arbitrary sequential arbitrary sporadic yes

Objects managers arbitrary sequential arbitrary sporadic yes

programs calls or RPC star synchronous star sporadic yes
Layered hierarchical any hierarchical sporadic often
Independent Components Architectural Styles
Event Systems processes signals arbitrary asynchronous arbitrary sporadic yes

processes arbitrary arbitrary sporadic possibly
Data Centered Architectural Styles

Repository queries star asynchronous star sporadic possibly

Black-Board star asynchronous star sporadic no

data
batches
data
streams

Main Program /
Subroutines

dynamic
calls

Call-based Client
Server

Communicating
Processes

message
protocols

any but
sequential

memory,
computations
memory,
components

direct
access

Boxology – Shaw & Clements

21.10.12 Copyright © Alar Raabe 201262

Viewtypes and Styles in Architecture Description

• CMU SEI
– The Module

• Decomposition
• Uses
• Generalization
• Layered

– Component-and-Connector
• Datastream
• Call-Return
• Shared-Data
• Publish-Subscribe
• Communicating Processes

– Allocation
• Deployment
• Implementation
• Work Assignment

• Others
– RUP / Kruchten 4+1

• Logical view (functionality)
• Process view (performance, ...)
• Deployment view (delivery)
• Implementation view (management)
• Use-Case view (consolidating)

– Siemens Four Views
• Conceptual
• Module
• Code
• Execution

– C4ISR Framework
• Operational architecture
• System architecture
• Technical Architecture

21.10.12 Copyright © Alar Raabe 201263

(Ontology of) Architectural Design Decisions

• Kinds of Architectural Design
Decisions

– Existence Decisions (ontocrises)
• Structural decisions
• Behavioral decisions
• Ban or non-existence decisions

(anticrises)
– Property Decisions (diacrises)

• Constraints
• Design rules
• Guidelines

– Executive Decisions (pericrises)
• Organizational decisions
• Process decisions
• Technology decisions
• Tool decisions

• Attributes of Architectural Design
Decisions

– Epitome (the Decision itself)
– Rationale (“why”)
– Scope
– State (idea, rejected,

tentative/challenged, decided,
approved)

– Author, Time-Stamp, History
– Categories (usability, security, …)
– Cost
– Risk

• Relationships between Architectural
Design Decisions

– Constraints
– Forbids (Excludes)
– Enables
– Subsumes
– Conflicts with (mutually excluding)
– Overrides
– Comprises (is made of, decomposes

into)
– Is bound to (strong)
– Is an alternative to
– Is related to (weak)
– Dependencies

• Relationship with External Artifacts
– Traces to
– Does not comply with

21.10.12 Copyright © Alar Raabe 201264

Example of Valuation of Software Architecture
Decision as Option

• Suppose that
– At first step of the project it is possible the make €1000 investment, which

can with 50% probability be sufficient, but with 50% probability there will be
need to invest €3000 more, to get business profit

– and NPV
profit

 of business profit from the development will be €2200

• Then

– static NPV
project

 = €2200 - (€1000 + 50% * €3000) = -€300 → don't invest

• But
– As the project can be cancelled, when worst case materializes, then

dynamic NPV
project

 = 50% * (€2200 + €0) - €1000 = €100

(investment of €1000 creates option to get €2200 with 50% probability) →
good investment – invest!

21.10.12 Copyright © Alar Raabe 201265

Questions

• Architecture
– Does every software system has an architecture?

– Which part of the software architecture assures the durability (guards against
the erosion of system's architecture)?

– Does software architecture description has an architecture?

• Architecture Styles
– Which are good and bad properties of the data-base centric software

architecture style?

– Which architectural style elements of REST assure the scalability of software
system?

– Why asynchronous connections between components are preferred in the
software systems which need high throughput/performance?

• Value of Architecture
– Describe usages of an architecture description in the software engineering?

– How you would calculate the monetary value of an architecture decision?

	Slide 1
	Slide 2
	Content
	Architecture
	Design vs. Architecture
	Early Views on Software Architecture
	Software Architecture as Discipline
	Agile and Software Architecture
	Software Architecture Standards
	System, Architecture and Architecture Description
	Architecture Description – set of Views
	Stakeholders & Concerns & Decisions
	Architecture Framework – set of Viewpoints
	Example: Sensor Collection Service
	What is Software Architecture
	Slide 16
	Software Architectural Styles
	Different Architectures – Different Properties
	Slide 19
	Different Levels: Idioms, Patterns, Styles
	What is a Software Architectural Style
	Classification of Architectural Styles
	Classes of Architectural Styles
	Dataflow System
	Dataflow System – Evaluation
	Slide 26
	Data-Centered Systems (Repositories)
	Data-Centered Systems (Repositories) – Evaluation
	Slide 29
	Independent Components (SOA)
	Independent Components (SOA) – Evaluation
	Slide 32
	Compound Style (REST)
	Compound Style (REST) – Evaluation
	Slide 35
	Building a Software Architectural Style – REST
	Deriving REST from Constituents
	Emerged Architecture – Big Ball of Mud !
	Slide 39
	Slide 40
	Software Quality Attributes
	Comparing CMU SEI and ISO/IEC 9126
	Quality Attribute Tradeoff Points
	Architecture-Centric Methods
	Architecture Tradeoff Analysis Method (ATAM)
	Example: SOA Quality Attribute Scenario
	Slide 47
	Slide 48
	Slide 49
	Value of Software Architecture
	Measuring Value of Software Architecture
	Real Options for Valuation of Software Architecture
	What Changes in Business and How Often ?
	Make it Easy to Change – Make it Explicit !
	Slide 55
	Conclusions
	Slide 57
	Extra: Smartphone Architectures
	Slide 59
	Terms (Glossary)
	Slide 61
	Viewtypes and Styles in Architecture Description
	Architectural Design Decisions
	Slide 64
	Slide 65

