Software Architecture

A Short Introduction

Alar Raabe

Alar Raabe

« Over 30 yearsinIT

— held various roles from programmer to a software architect and to
enterprise business architect

* 15 years in insurance and last 6 years in banking domain

— developed model-driven technology for insurance applications product-line
(incl. models, method/process, platform/framework and tools)

— developing/implementing business architecture framework and methods
for a banking group

* Interests
— software engineering (tools and technologies)
— software architectures
— model-driven software development
— industry reference models (e.g. IBM IAA, IFW)
— domain specific languages

2 29.9.13 Copyright © Alar Raabe 2013

Content

Software architecture is what
software architects do

Kent Beck

« What is Software Architecture
— Design vs. Architecture, Early Views and Software Architecture
Discipline

— Software Architecture related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

» Software Architectural Styles
— Classification of Software Architectural Styles
— Examples of Different Software Architectural Styles

« Software Quality Attributes
— Categories of Software Quality Attributes
— Quality Attribute Driven Design

» Value of Software Architecture
— How to Evaluate Software Architectural Decisions
— Value of Software Architecture

Conclusions

3 29.9.13 Copyright © Alar Raabe 2013

Architecture

Architecture is about:

¢ Durability (firmitas) =
s Utility (utilitas)
*» Beauty (venustas)

* Merriam-Webster :: Architecture (n)
— art or science of building
— unifying or coherent form or structure

— manner in which the components of the system are organized and
integrated

Marcus Vitruvius Pollio
(Rome, 1° century BC)

« Wikipedia :: Architecture
(Greek: apyirekrovikn and Latin: architectura)
— 2012

» the term "architecture" has been adopted to describe the activity of designing any
kind of system, and is commonly used in describing information technology

— 2011

» art and science of designing (buildings and other physical) structures

+ style and method of design and construction of (buildings and other physical)
structures

— 2009

» as documentation, usually based on drawings, architecture defines the structure
and/or behavior of a system that is to be or has been constructed

4 29.9.13 Copyright © Alar Raabe 2013

5

Example

29.9.13

Two kinds of stools

What's the difference ?
How many legs is good ?

| I |

Copyright © Alar Raabe 2013

6

Example

29.9.13

Two kinds of web applications

User Interface +
Business Logic

DataBase
System

How many layers/tiers is good ?
What's the difference ?

| |

User Interface

Business Logic

DataBase
System

Copyright © Alar Raabe 2013

Design vs. Architectu

re

* Design = Plan

All architecture is design but
not all design is architecture

Grady Booch

| |

— adaptation of means (what we have) to ends (what we want)

« Software Design can be viewed on many levels
— design of higher levels is architecture for the lower levels

« Booch

— architecture represents significant design decisions that shape a system,

where significant is measured by cost of change

 Eden
— Architectural decisions and specifications are

* intensional (generic — applicable to many implementations), and

The Intension/Locality Thesis

* non-local (applicable to entire system)

Non-Loca
Loca

Loca

7 29.9.13

| Intensional Architecture
| Intensional Design

| Extensional Implementation

Copyright © Alar Raabe 2013

Early Views on Software Architecture

Structure matters ! F

e Turing & Wheeler (1946-50)

— reuse of program code and modularization — (closed) subroutine

— subroutine library (reusability, reliability, unit testing (testability), multiple
versions with different non-functional qualities, ...)

» Iverson & Brooks (1964-69)
— architecture is a conceptual structure

— architecture is the complete and detailed specification of the user
interface (!)

» Dijkstra, Parnas & Jackson (1972-76)
— separation of concerns — isolation, encapsulation, modularization
— program families can be described by a decision trees

— Structure influences non-functional ‘qualities’ of system
— Structure of program is defined by domain structures

8 29.9.13 Copyright © Alar Raabe 2013

Software Architecture as Discipline

elements + form/structure + rationale/principles
(what) (how) (why)

* Perry & Wolf (1992)

— Software Architecture = { Elements, Form, Rationale }

 a set of architectural (or, if you will, design) elements that have a particular form
(of three different classes: processing, data, and connecting elements),

 architectural form, consisting of weighted properties and relationships, and
 rationale for various choices made in defining an architecture

« Garlan & Shaw (1994)

— a collection of computational components — or simply components —
together with a description of the interactions between these
components — the connectors

» Bass, Clements, Kazman (1997)

— the structure or structures of the system, which comprise software
components, the externally visible properties of those components, and
the relationships among them

« Eden, Kazman (2003)

— strategic design decisions/statements (global design constraints like
programming paradlgms, architectural styles, component-based software
engineering standards, design principles, and law-governed regularities)

9 29.9.13 Copyright © Alar Raabe 2013

Agile and Software Architecture

Architecture is the important
stuff — whatever that is -

Ralph Johnson

« Johnson (...)
— a shared understandin% of the system design of the expert developers

working on the project (incl. how the system is divided into components
and how the components interact through interfaces)

— the decisions that you wish you could get right early in a project

» Beck (2000)

— Expressed in XP through system metaphor, which “helps everyone to
understand basic elements and their relationships”

— Should be created by first iteration

* Fowler (2003)

— a word we use when we want to talk about design but want to puff it up
to make it sound important

10 29.9.13 Copyright © Alar Raabe 2013

Software Architecture Standards

architecture # architecture description F

* Open Group TOGAF 9 Enterprise Architecture Framework

— a formal description of a system, or a detailed plan of the system at
component level to guide its implementation

— the structure of components, their interrelationships, and the

{_)rinciples and guidelines governing their design and evolution over
ime

 IEEE 1741 | ISO/IEC 42010 Systems and Software Engineering —
Architecture Description
— the fundamental conception of a system in its environment embodied in

elements, their relationships to each other and to the environment, and
principles guiding system design and evolution

— Architecture descriptions are for ...
« Communicating among the system’s stakeholders
* Planning and Managing system development and operations

» Evaluating and Comparing systems architectures, and verifying system'’s
implementation for compliance with its intended architecture

11 29.9.13 Copyright © Alar Raabe 2013

12

System, Architecture and Architecture Description

Environment

influences

Purpose

*

fulfills

29.9.13

situated in

System

has

ISO/IEC 42010 F

Every system has
an architecture !

7

has

Stakeholder

Architecture

described by

*

Architecture
Description

Copyright © Alar Raabe 2013

Architecture Description — set of Views

ISO/IEC 42010

has *)
System Architecture
ha1s . described by
1 identifies .
Stakeholder — Architecture offers 0.. Architecture
Description Rationale
is important to 1.7 identifies <> <>
1 * justifies
s 1 "*
Architecture- Architecture 0..”
related Concern . Decision
employs includes
1.% * 1.* 0.* i 0.*
frames govemns . depends
Architecture Architecture Model |
Viewpoint View Correspondence |
conforms to |
conforms 1.* !
composed of :
1. - relates affects l
sanctions . - |
Architecture . !
1 Model L
29.9.13 Copyright © Alar Raabe 2013

Stakeholders & Concerns & Decisions

ISO/IEC 42010

« Stakeholders
— Users and operators
— Acquirers and owners
— Suppliers, developers, builders and maintainers

» Architecture-related Concerns
— The suitability of the architecture for achieving the system’s purposes
— The feasibility of constructing the system
— The potential risks of the system to its stakeholders throughout its life cycle
— Maintainability, deployability, and evolvability of the system

« Architecture Decisions are decisions
— regarding architecturally significant requirements
— needing a major investment of effort and time
— affecting key stakeholders or a number of stakeholders
— needing intricate or non-obvious reasoning
— that are highly sensitive to changes
— that could be costly to change

14 29.9.13 Copyright © Alar Raabe 2013

Architecture Framework — set of Viewpoints

ISO/IEC 42010
1 * identifies
Stakeholder -
Architecture
Framework
1.7%
is important to
1.7% identifies
Architecture- 1.7
related Concern defines defines 0..* Model
Correspondence
1.% ule
0..1
satisfies
1.% 0.*
frames _ governs _
Architecture Architecture Model
Viewpoint View Correspondence
conforms to
conforms 1.%
composed from
1.% relates
governs .
Architecture
1 Model o *

15 29.9.13 Copyright © Alar Raabe 2013

Example

Sensor Collection Service
Architecture Description

ISO/IEC 42010

* Purpose (of the System)
— Subscription-based service of providing access to a widely-distributed set of sensors

« Stakeholders
— Users, developers, operators

* Architecture-related Concerns (by Stakeholders)
— ROI (operators)
— Timely delivery of sensor data (users)
— Understanding of interactions between system elements (developers)

« Viewpoints (by Architecture-related Concerns)
— Financial: cash-flow spreadsheet (ROI)
— Operational: time-line diagram (timely delivery of sensor data)
— System: system component diagram (understanding of interactions between system elements)

» View Consistency and Correspondence Rules
— Each node in component diagram should appear at least once in time-line diagram

* Views (by Viewpoints)
— Profit spreadsheet & profitability curve (cash-flow spreadsheet)
— Time-line diagram (time-line diagram)
— Data-flow diagram (system component diagram)

16 29.9.13 Copyright © Alar Raabe 2013

Conclusion — What is Software Architecture

architecture is a model of system
and architecture description is a
model of architecture

| |

« Software Architecture is a
— fundamental conception of a (software) system in its
— environment embodied in
— elements, their
— relationships to each other and to the environment, and
— principles guiding software system design and evolution

« Software Architecture Description is a

— collection of related (corresponding) models, organized into cohesive
groups of

— synthetic (constructed) or ﬁrojective (derived) views, defined by
viewpoints according to the related set of concerns (in architecture
framework)

« Software Architecture Model is

— wogt'k product that can be used to answer questions about the software
system

— M. Minsky 1968: “to an observer B, an object A* is a model of an object A to the extent that B
can use A* to answer questions that interest him about A”

— |EEE SE VOCAB: an interpretation of a theory for which all the axioms of the theory are true, or
a semantically closed abstraction of a system or a complete description of a system from a

rticul ti
17 29.9.13 partictiar perspeciive Copyright © Alar Raabe 2013

Content

« What is Software Architecture

Each style provides an abstraction
for the interactions of components,
capturing the essence of a pattern of
interaction

Roy Fielding

| |

— Design vs. Architecture, Early Views and
Discipline

Software Architecture

— Software Architecture related Concepts and Terminology

(IEEE 1741 | ISO/IEC 42010)

» Software Architectural Styles

— Classification of Software Architectural Styles
— Examples of Different Software Architectural Styles

« Software Quality Attributes

— Categories of Software Quality Attributes

— Quality Attribute Driven Design

» Value of Software Architecture

— How to Evaluate Software Architectural Decisions

— Value of Software Architecture

 (Conclusions

18 29.9.13

Copyright © Alar Raabe 2013

Software Architectural Styles

families of system are related by shared
structural and semantic properties

| |

- Different Architectures — Different Properties

- Different Levels of Commonality: Idioms, Patterns, Styles

- Software Architectural Styles
— What is a Software Architectural Style
— Classification of Architectural Styles

- Examples of Different Software Architectural Styles
— Dataflow Systems — Pipes and Filters
— Data-Centric Systems (Repositories) — Blackboard
— Independent Components — Service Oriented Architecture (SOA)
— Complex (Compound) Style — REST (Representational State Transfer)

- Building a Software Architectural Style

Emerged Software Architecture

19 29.9.13 Copyright © Alar Raabe 2013

20

Example

Different Architectures — Different Properties

__

29.9.13

Scheduler

adding new task F

S —— Scheduler

Copyright © Alar Raabe 2013

Example

Different Architectures — Different Properties

adding forecasts of portfolio F

ul

Task 3

Task 1
v
‘ Task 2
]
iti,| v
Task 3
\M

el

21 29.9.13 Copyright © Alar Raabe 2013

Different Levels of Commonality:
Idioms, Patterns, Styles

reuse of (design) knowledge F

« Specific to a (programming) language

— Software Idioms — coding/programming
» describe usage of (programming) language for certain (simple) problems

— Programming Style — programming

» a consistent set of idioms (e.g. fluent style, functional style, ...)

» (Programming) language independent

— Design Patterns — design
» describe standard solutions to certain common functional problems

— Architecture Styles — architectural design
 specific vocabulary and rules for architectural design
» define a class of systems with specific properties
» describe standard solution to a class of non-functional problems

22 29.9.13 Copyright © Alar Raabe 2013

What is a Software Architectural Style

a coherent package of pre-made design decisions F

« Characterizes a family/class of system architectures that are related by
shared structural and semantic properties

* Defines
— a vocabulary of design elements
— design rules, or constraints (incl. topology)
— semantic interpretation
— analyses that can be performed on systems built in that style

» Benefits
— Design Reuse — well-understood solutions applied to new problems
— Code Reuse — shared implementations of invariant aspects of a style
— Understandability of System Organization — e.g. meaning of “client-server”
— Interoperability — supported by style standardization
— Style-Specific Analysis — enabled by the constrained design space

— Visualizations — style-specific descriptions matching engineer’'s mental
models (e.g. stack diagrams for layers)

23 29.9.13 Copyright © Alar Raabe 2013

Classification of Architectural Styles

Boxology — Shaw & Clements F

« Constituent Parts: Components and Connectors
— Component — unit of software that performs some function at run-time
— Connector — mechanism that mediates communications

« Control Issues
— Topology — geometric form of control flow (e.g. linear, tree, acyclic graph, arbitrary)
— Synchronicity — (in)dependence of components’ upon each others’ actions
— Binding Time — when identity of partner for control flow is established

« Data Issues
— Topology — geometric form of data flow
— Continuity — new data generation (e.g. continuously, sporadically (at discrete times))
— Mode — how data is made available (e.g. passed, shared)
— Binding Time — when identity of partner for data flow is established

« Control/Data Interaction Issues
— Shape — isomorphism of the control flow and data flow shapes
— Directionality — conformance of directions of control and data flow

« Type of Reasoning

24 29.9.13 Copyright © Alar Raabe 2013

Classes of Architectural Styles

Boxology — Shaw & Clements F

« Data-flow Systems
— Batch sequential, Data Flow Network, Pipes and Filters

« Call-and-return Systems (explicit calls)

— Main programs and subroutines, Abstract Data Types, OO systems,
Client-Server, Layered (hierarchical layers), Three-tier

» Independent Components (implicit calls)
— Communicating processes, Event-driven systems, SOA

» Virtual Machines
— Interpreters, Rule-based systems

« Data-Centered Systems (Repositories)
— Database-centric, Hypertext systems, Blackboards

 Complex (Compound) Styles
— REST, C2 (Chiron-2), ...

25 29.9.13 Copyright © Alar Raabe 2013

Example

Data-flow System

shared nothing ! F

» Data-flow Systems — Pipes and Filters (Data Flow Network)
— Components (sources, filters, sinks)
— Connectors (pipes)
— Constraints (is feedback allowed or not, are pipes buffering, ...)

— Theory (Queueing Theory (K. Erlang 1909))

» Fiter1 | ———® Sink1

Source —P Filter O —> Fork —P Filter 2 —P Sink 2

Filter 3

« Examples
— Batch systems —»—» Filter 31 —» Filter32
— Many compilers
— Unix pipelines
— Spreadsheets
— JDPF (Java Data Processing Framework)
— Signal and Graphic processors

26 29.9.13 Copyright © Alar Raabe 2013

Example

Data-flow System — Evaluation
shared nothing !

« Advantages

 Disadvantages

Copyright © Alar Raabe 2013

Example

Data-flow System — Evaluation

shared nothing ! F

« Advantages
— Modifiability & Reuse (low coupling, encapsulation)
» Filters can be treated as black boxes

— Ease of construction

« System can be hierarchically composed (new higher order filters can be created by combining
lower order pipes and filters, etc.)

— Flexibility

» Construction (system configuration) can often be delayed until run time (late binding)
— Run-time scalability

» ltis easy to run a pipe-and-filter system on parallel processors
— Understandability/Analyzability

« Supports well certain analyses (throughput, latency, deadlock)

« Disadvantages
— Difficult to create interactive applications
— Common data representation
* The lowest common denominator (typically byte or character streams)
— Parsing overhead
» Every filter may introduce parsing and un-parsing of the data stream

— Unknown memory requirements and deadlock possibility (e.g. sort filter has this
problem)

28 29.9.13 Copyright © Alar Raabe 2013

29

Example

Data-Centered Systems (Repositories)

» Data-Centered Systems — Blackboard

Components (knowledge sources, blackboard;

opt. moderator)

Connectors (requests to and/or notifications from blackboard)

Constraints (transaction consistency, ...)

shared everything ! F

Theory (coalgebras, multi-stream interaction machines (Wegner), coordination theory, transaction

theory, ...)

_ Knowledge
> Source

_ Knowledge
1q Source

Source

Blackboard

Knowledge .
Source <

Knowledge .
Source <

Knowledge .
Source <

;L_» Knowledge

Moderator

« Examples

29.9.13

Many expert systems (e.g. Hearsay Il)
Many language compilers and IDEs
Systems with global database
GBBopen (based on Common Lisp)
Java Spaces

Blackboard Event Processor (JVM-based, JavaScript, Jruby)

Copyright © Alar Raabe 2013

Example

Data-Centered Systems (Repositories) — Evaluation
shared everything !

« Advantages

« Disadvantages

Copyright © Alar Raabe 2013

Example

Data-Centered Systems (Repositories) — Evaluation

shared everything ! F

« Advantages

— Scalability
+ Easy to add more knowledge sources
« Knowledge sources can run in parallel and are synchronized through the central repository
— Separation of concerns (problem partitioning)
» Each knowledge source performs separate function
« Each knowledge source solves part of the problem
— Coupling
* Loose coupling between knowledge sources
— Modifiability
* Knowledge sources can be modified independently

« Disadvantages
— Scalability
« Blackboard becomes bottleneck with too many knowledge sources
— Coupling
+ Tight coupling between knowledge sources and blackboard
— Understandability/Analyzability
« Difficult to analyze — non-deterministic behavior
+ System behavior emerges from the behaviors of knowledge sources

31 29.9.13 Copyright © Alar Raabe 2013

Example

Independent Components (SOA)

bus and directory are optional ! F

* Independent Components — Service-Oriented Architecture (SOA)
— Components (providers, users/consumers; opt. bus, directory)
— Connectors (synchronous and asynchronous calls, messages)
— Constraints (call style, ...)
— Theory (CSP (C.A.R. Hoare), tr-calculus (Millner, Parrow), ...)

Service User 1 Service User 2 Service User 3

! { :

Service Bus (Broker)

: ! :

* Examples Provider 1 Prosider 2 Prosider 3
— CORBA (lIOP) ; ; ;
ORB is bus e e I I
Naming Service is directory
— DCOM (RPC)

— Jini (RMI) — LUS as directory
— Web Services (HTTP) — UDDI as directory
— ESB (Mule, Apache ServiceMix)

32 29.9.13 Copyright © Alar Raabe 2013

Example

Independent Components (SOA) — Evaluation
bus and directory are optional !

« Advantages

 Disadvantages

Copyright © Alar Raabe 2013

34

Example

Independent Components (SOA) — Evaluation

bus and directory are optional ! F

« Advantages

Coupling
* Loose coupling — specially, if asynchronous calls are used
Interoperability

« Service users can transparently call services implemented in disparate platforms using different
languages

Modifiability

* Loose coupling between service users and service providers

» Services are self-contained and modular
Extensibility (adding new services is easy if bus is used)
Reliability (good fault tolerance, if asynchronous calls are used)

« Disadvantages

29.9.13

Performance
* Network overhead
» Overhead of intermediaries (like bus and service directory)
* Message parsing overhead

Scalability (limited scalability, if synchronous calls are used)

Security (difficult to achieve end-to-end security — needs message level security
mechanisms)

Testability (more complex — difficult to test)
Reliability (complex error recovery needed)

Copyright © Alar Raabe 2013

Example

Compound Style (REST)

architecture of web ! F

* Compound Style — REpresentational State Transfer (REST)

— Components
. (Ij)atta)(resources, resource identifiers, representations, representation metadata, resource metadata, control
ata

» Processing (origin servers, gateways, proxies, user agents)
— Connectors (clients, servers, caches, resolvers, tunnels)
— Constraints (data is not encapsulated, ...)
— Theory (Fielding analysis)

User Agent 1| Client \ Proxy 1
/ Server | Cache | Client [d—— | Server | Origin Server 1
User Agent 2| Client

Gateway 1 Server | Origin Server 2
User Agent 3| Client < ¢—| Server Client <

« Examples Server | Origin Server 3

- WWW (World Wide Web)

— Twitter, Yahoo, Amazon S3 API
— CMIP/CMOT (Common Management Information Protocol)
— IBM WebSphere Portal REST API

35 29.9.13 Copyright © Alar Raabe 2013

Example

Compound Style (REST) — Evaluation

architecture of web !

« Advantages

 Disadvantages

Copyright © Alar Raabe 2013

Example

Compound Style (REST) — Evaluation

architecture of web ! F

« Advantages
— Simplicity
* No need for explicit resource discovery mechanism due to hyper-linking
— Scalability (compared with architectures that require stateful servers)
— Efficiency
» Caching promotes network efficiency and fast response times
— Evolvability

» Support of document type evolution (such as HTML and XML) without impacting backward or
forward compatibility

— Extensibility
» Allows support for new content types without impacting existing and legacy content types

« Disadvantages
— Limited functionality
» Selected uniform interface (HTTP) is difficult for handling real time asynchronous events
— Scalability
* Managing URI namespace can be cumbersome

« Can impact network performance by encouraging more frequent client-server requests and
responses

— Visibility (in case code-on-demand is used to extend the client)

37 29.9.13 Copyright © Alar Raabe 2013

Emerged Architecture — Big Ball of Mud !

Complexity increases rafpidly t
until it reaches a level o
complexity just beyond that
« Emerges from with which we can

— Throwaway code, Piecemeal growth, Keep-it-Working, | comfortably cope

— Shearing layers, Sweeping it under the rug

Cunningham

* Forces corresponding to emergence
— Time — designing architecture takes time
— Cost — designed architecture costs and is long-time investment
— Experience and skill — designing architecture requires know-how
— Complexity and scale of the problems
— Change - predicting future change requires vision and courage
— Organization — architecture reflects organization (Conway’s law)

—

* Advantages Organizations which design systems
are constrained to Produce designs
which are copies of the
communication structures of these

= organizations (Conway 1968)

» Disadvantages

u

38 29.9.13 Copyright © Alar Raabe 2013

Emerged Architecture — Big Ball of Mud !

Complexity increases rafpidly t
until it reaches a level o
complexity just beyond that
« Emerges from with which we can

— Throwaway code, Piecemeal growth, Keep-it-Working, | comfortably cope

— Shearing layers, Sweeping it under the rug
Cunningham

* Forces corresponding to emergence
— Time — designing architecture takes time
— Cost — designed architecture costs and is long-time investment
— Experience and skill — designing architecture requires know-how
— Complexity and scale of the problems
— Change - predicting future change requires vision and courage
— Organization — architecture reflects organization (Conway’s law)

—
« Advantages — mostly business concerns ! o _ _
— Quick to make > Time-to-Market ggtae?rllzsatla?gsc’%gltcr:gir?gdSI?on
~ Doseot need governance - just emerges produce designs, which are
, copies of the communication
— Does not need skills structures of these organizations
(Conway 1968)

« Disadvantages — mostly IT concerns !
— Maintainability — difficult and costly to maintain
— Modifiability — hard and dangerous to change
— Testability — difficult to test

39 29.9.13 Copyright © Alar Raabe 2013

Content

Quality mean doing it right when
no one is looking

Henry Ford

« What is Software Architecture

— Design vs. Architecture, Early Views and Software Architecture
Discipline

— Software Architecture related Concepts and Terminology

(IEEE 1741 | ISO/IEC 42010)

» Software Architectural Styles

— Classification of Software Architectural Styles

— Examples of Different Software Architectural

« Software Quality Attributes
— Categories of Software Quality Attributes
— Quality Attribute Driven Design

» Value of Software Architecture

Styles

— How to Evaluate Software Architectural Decisions

— Value of Software Architecture

Conclusions

40 29.9.13

Copyright © Alar Raabe 2013

Categories of Software Quality Attributes

... characteristics of software that
affect its 8uallty — ability to satisfy

stated and implied needs
« CMU SEI « |ISO/IEC 9126
— End User’s View — End User’s View
* Functionality * Functionality
* Interoperability - Suitability, Accuracy, Interoperability,
. Security
» Security L
» Performance (Effici ¢ ey
. iciency) — Maturity, Fault Tolerance,
* Resource Efficiency Recovérability
» Availability and Reliability » Usability
. i — Understandability, L bility,
) ey SpermR ey

» Efficiency

— Time Behavior, Resource Utilization

— Developer’s View — Developer’s View
+ Modifiability * Maintainability
» Portability (Extensibility) — Analyzability, Changeability, Stability,
» Reusability Testability
« Integrability * Portability N .
. — Adaptability, Installability, Co-Existence,
» Testability Replaceability
— Business’s View — Business’s View
Time-to-Market
Cost vs. Benefits ??7? MISSING 77?7
Projected Life-Time

Targeted Market
Integration with Legacy
Roll-out (Roll-back) Schedule

41 29.9.13 Copyright © Alar Raabe 2013

42

Availability

Flexibility

Integrity

Interoperability

Maintainability

Portability

Reliability

Reusability

Robustness

Testability

Usability
29.9.13

Availability

Quality Attribute Tradeoff Points

Efficiency

Flexibility

Integrity

Interoperability

Maintainability

Portability

You can’t eat your cake
and have it too !

+ LEEHRY
Reusability
L M Robustness

+ =
Copyright © Alar Raabe 2013

Architecture-Centric Methods

CMU SE| F

» A Family of Scenario-Driven and Quality Attribute Driven
Development Methods

— Software Architecture Analysis Method (SAAM)

— Architecture Tradeoff Analysis Method (ATAM)

« To assess the consequences of architectural decision alternatives in light of
quality attribute requirements — uses scenarios

— Quality Attribute Workshop (QAW)

— Cost-benefit Analysis Method (CBAM)

— Active Reviews for Intermediate Design (ARID)
— Attribute-Driven Design (ADD)

— Pedigree Attribute eLicitation Method (PALM)

 To elicit and capture business goals that lie behind the development of software-
intensive system

Business goals > Qualityattributes
I
I
I
\'
Non-architectural solutions Architecture

43 29.9.13 Copyright © Alar Raabe 2013

Architecture Tradeoff Analysis Method (ATAM)

CMU SEI F
* Input * Qutput
— A set of identified architectural — A set of quality-attribute specific
approaches questions and responses
— “utility tree” — driving — A set of identified risks
architectural requirements — A set of identified non-risks
— The set of scenarios mapped — A set of risk themes that
onto architecture threaten to undermine the
: : business goals for the system
> Business . Quality » Scenarios
Drivers Attributes N
Architectural) Architectural) Architectu%}\
> Plan Approaches Decisions
Tradeoffs &—
Sensitivity 8 Stimulus> ATLE: ResponS{;
Impacts Points l
Squrce of Environment Response
Non-Risks Stimulus Measure
Risk Themes g Dstied into Risks <

44 29.9.13 Copyright © Alar Raabe 2013

45

Example

Travel Agency System Architecture

|
! |
| ey
| Consumer Adventure [|
| Web Website Catalog |
| browser DB :
| : |
' |
R | OpcPurchase (O OpcOrder :
| OrderService TrackingService |
' |
: e |

[
CreditCard | ASVP‘E“B‘: |
Service | |
() | :
| Veb |
| Service ® |
: Broker :
Bank | |
b e o gl e i e e e — e iy s e e s i]

DActivityPO
AirlinePOC) Lodeinepo Sahiica
Servi () Lodging o
= Service Activity
Airline o Provider
Provider ging
Provider
29.9.13

CMU SE| F

Key:

client-side

application
J2EE
application

External Web
senice

Web services
endpoint

relational
dala source

—phittp/htips
——= S0AP call
JDBC

[~ =~ 1Scope of the
=1 | application (not
I- — ~!a component)

Copyright © Alar Raabe 2013

Example

SOA Quality Attribute Scenario (Modifiability)

CMU SEI F
Scenario 2 * (Source) Business Analyst/Customer
Modifiability * (Stimulus) Add a new airline provider that uses its own Web services

interface.

» (Artifact) OPC (Order Processing Center)

* (Environment) Developers have already studied the airline provider interface
definition.

+ (Response) New airline provider is added that uses its own Web services.

* (Response Measure) No more than 10 person-days of effort are required for

46 29.9.13 Copyright © Alar Raabe 2013

Example

SOA Quality Attribute Scenario Analysis

CMU SE| F

Analysis for Scenario 2

Scenario Summary A new airline provider that uses its own Web services interface is added to the
system in no more than 10 person-days of effort for the implementation.

Business Goal(s) Permit easy integration with new business partners.

Quality Attribute Modifiability, interoperability

Architectural » Asynchronous SOAP-based Web services
Approaches and * Interoperability is improved by the use of document-literal SOAP messages for
Reasoning the communication between OPC and external services.

» Adventure Builder runs on Sun Java System Application Server Platform
» Edition V8.1. This platform implements the WS-| Basic Profile V1.1, so
interoperability issues across platforms are less likely to happen.

Risks The design does not meet the requirement in this scenario, because it assumes
that all external transportation providers implement the same Web
services interface called ‘AirlinePOService’ (as shown in Figure 10 and Figure
11). The design does not support transportation providers that offer their own
service interface.

Tradeoffs The homogenous treatment of all transportation providers in OPC increases
modifiability. However, intermediaries are needed to interact with external
providers that offer heterogeneous service interfaces, as in this scenario.
These intermediaries represent a performance overhead, because they may
require routing messages and extensive XML processing.

47 29.9.13 Copyright © Alar Raabe 2013

Building a Software Architectural Style —- REST

Fielding

» Desired Properties

— Performance (network and user-perceived performance, and network efficiency)

— Scalability

— Simplicity

— Modifiability (evolvability and extensibility, customizability and configurability, reusability)

— Visibility

— Portability

— Reliability
« (Some) Constituent Architecture Styles

— Null Style — an empty set of constraints

— Client-Server Style (CS) — separation of concerns —> modifiability, independent evolution

— Stateless Communication (S) — session state in client - visibility, reliability, scalability
— Cache ($) — a variant of Replicated Repository (RR) - network efficiency

— Uniform Interface (U) — a constrained set of well defined operations and content types
—> simplicity, portability

— Layered System Style (LS) — hierarchical decomposition, managing complexity
—> simplicity, scalability

— {optional} Code-on-Demand (COD) — simplified clients, but lower visibilit
- modifiability Xextensibility), simplicity

48 29.9.13 Copyright © Alar Raabe 2013

Deriving REST from Constituents

Fielding

statelgss

intermed
processing

simple
visible

extensible

reusable
LCODC$SS

multi org.

Cosss D »tosss

49 29.9.13 Copyright © Alar Raabe 2013

50

Content

It is not about bits, bytes and
protocols, but profits, losses and
margins

Lou Gerstner

What is Software Architecture

— Design vs. Architecture, Early Views and Software Architecture
Discipline

— Software Architecture related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

Software Architectural Styles
— Classification of Software Architectural Styles
— Examples of Different Software Architectural Styles

Software Quality Attributes
— Categories of Software Quality Attributes
— Quality Attribute Driven Design

Value of Software Architecture
— How to Evaluate Software Architectural Decisions
— Value of Software Architecture

Conclusions

29.9.13 Copyright © Alar Raabe 2013

Value of Software Architecture

80% of time during
maintenance is spent in
design-rediscovery

Davidson, 2002

Value of Architecture (Description) Value that Architecture provides

» Users and operators of the system Users and operators of the system

— Understand the external system behavior — High availability and performance
— Understand how to operate system — Survival from partial failure
* Acquirers and owners of the system * Acquirers and owners of the system
— Understand economical issues connected — Easy integration into environment
to the system
« Suppliers and developers of the system * Suppliers and developers of the system
— Plan development and construction — Speed and freedom
— Estimate system properties — Guidance

— Reuse of effort, skills and know-how
— Ease of integration

« Builders and maintainers of the system * Builders and maintainers of the system
— Understand the system internals — Survival of extension, adaptation,
retquwements changes, platform changes,
etc.

51 29.9.13 Copyright © Alar Raabe 2013

Measuring Value of Software Architecture

Focus on quality and cost will decrease
Focus on costs and quality will decrease

W. E. Deming

« Value of Software Architecture
— Cost of realization of risks compared to cost of architecture

n

value, = (costrisk(concern,))—cost
=il

arch

» Value of Software Architecture Description

— Cost of performing activities without architecture description compared to
cost of documenting architecture

n

value, ., joce=2. (cost verforming| @CLIVItY ,))— COSt .+ dose
=1

52 29.9.13 Copyright © Alar Raabe 2013

Real Options for Valuation of Software Architecture

Real option

- is a right (opportunity), but not an obligation
. to make a decision in the future
* Applicable when - might be exercised multiple times (different
— there is Uncertainty from financial option)
— there is Business Change

— New Information should/could be exploited when it comes available
— Action today should create

« Possibility of future design choices

» Possibility of future value

« Strategic Value with Real Options
NPV o= NPV yaiionar+ VallE

» Valuation of real options
— Binomial lattices (decision trees with probabilities) & Markov processes
— Monte Carlo simulations

traditiona real.options

* Qualitative Design Principles (Sullivan)

— If the cost to effect a software architecture decision is sufficiently low, then the benefit
of investing to effect it immediately outweighs the benefit of waiting, so the decision
should be made immediately

— All else being equal, the value of the option to delay software architecture decision
increases with variance in future costs (risk)

53 29.9.13 Copyright © Alar Raabe 2013

Example

Valuation of Software Architecture Decision as Option

« Suppose that

— At first step of the project it is possible the make €1000 investment, which
can with 50% probability be sufficient, but with 50% probability there will be
need to invest €3000 more, to get business profit

— and NPVprofit of business profit from the development will be €2200

* Then

NPV_ . =€2200 - (€1000 + 50% * €3000) = - €300 — don't invest

tic
o But

— As the project can be canceled, when worst case materializes, then
NPV dynamic — 50% * €2200 - €1000 = €100 — invest — good investment!

(investment of €1000 creates option to get €2200 with 50% probability)

Value_ = NPV ~ NPV = €400

tion strategic / dynamic traditional / static

54 29.9.13 Copyright © Alar Raabe 2013

What Changes in Business and How Often ?

Segment specific
offerings and
packaging

—~ Customer

Open value network
New channels

> Channels/‘

Flexible product Segments Unified business
packaging processes
Product Business process
consolidation optimization
/
Products & > Your < Business
Offerings System(s) Processes

Business

Rules Eeéyulatory changes and

etter risk management

New regulations

55 29.9.13 Copyright © Alar Raabe 2013

o6

29.9.13

Make it Easy to Change — Make it Explicit !

/V\

Customer >
Segments

< Products &
Offerings

Channels

— .

Your System(s)

Business >
Processes

N

Business
Rules

7

'

Copyright © Alar Raabe 2013

Content

« What is Software Architecture

38. The architect concerns himself
with the depth and not the surface,
with the fruit and not the flower

Lao Tsu (by Philippe Kruchten)

| |

— Design vs. Architecture, Early Views anc
Discipline

— Software Architecture related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

» Software Architectural Styles

Software Architecture

— Classification of Software Architectural Styles
— Examples of Different Software Architectural Styles

« Software Quality Attributes

— Categories of Software Quality Attributes

— Quality Attribute Driven Design

 Value of Software Architecture

— How to Evaluate Software Architectural Decisions

— Value of Software Architecture

Conclusions

Y 29.9.13

Copyright © Alar Raabe 2013

Conclusions 1

Architecture is not about
documenting, but about
understanding !

| |

» Value of (Software) Architecture

— As fundamental conception of (software) system, architecture allows us
to reason (answer questions) about the (software) system

— As specific architectural styles address certain concerns (cause certain
properties/qualities) of (software) systems, architecture allows us to
ad tress concerns (achieve required properties or qualities) of (software)
systems

» Value of Architecture Description

— As document, it provides guidance for constructing and evolving the
(software) system, and allows us to record and communicate our
knowledge and decisions about the (software) system architecture

— As model, it allows us to reason (answer questions) about the (software)
system architecture

« Economic Value of Architecture

— Architecture creates choices/options, which have value — designing and
building an architecture is an investment activity

58 29.9.13 Copyright © Alar Raabe 2013

99

Conclusions ,

Find out who are your
business counter-parties
and communicate !

Have rationale for your architecture

— Connect your architecture descriptions (especially decisions) to the
business goals and requirements

Speak business language
— Show the value (payback) of investments into architecture

Gather data from development and operation

— You will need this data to build a business case for architecture (to show
the value of architecture)

Find out from business
— What will (or could) change
— How probable and how frequent is the change

Separate what will change from what will not, and group together
things that change with same rate

29.9.13 Copyright © Alar Raabe 2013

60

Example

29.9.13

Two Smart-phone Architectures

Application
Processor
(CPU)

Digital
Baseband

Processor
(Radio)

RAM

Do you know which one is yours ?
Do you care or should you care ?
Who cares which one is used ?

Application
Processor
(CPU)

RAM

Digital
Baseband
Processor
(Radio)

Copyright © Alar Raabe 2013

61

Example

Chat Client

Chat Server

Chat Client

29.9.13

Two Chat Architectures

Which one you prefer
to build ... orto use ?

|
|
|
|
|
|
|
|
|
|
: Chat Client Chat Client
. |
Chat Client .| Chat Server Chat Server
|
|
|
|
|
|
|
|
|
|
: Chat Client Chat Client
|
1 |
et Gl : Chat Server Chat Server
|
|
|
|
|

Copyright © Alar Raabe 2013

62

29.9.13

17. The architect doesn't talk, she
acts. When this is done, the team
says, "Amazing: we did it, all by
ourselves!”

Lao Tsu (by Philippe Kruchten)

| I |

Thank You!

Copyright © Alar Raabe 2013

architecture

architecture decision

architecture description
architecture model
architecture rationale
architecture view
architecture viewpoint

architecture-related
concern

environment

model correspondence
stakeholder
purpose

system

63 29.9.13

Term

Terms (Glossary)

ISO/IEC 42010

Definition
fundamental conception of a system in its environment embodied in elements, their relationships to

each other and to the environment, and principles guiding system design and evolution

choice made from among possible options that addresses one or more architecture-related concerns

collection of work products used to describe an architecture

work product from which architecture views are composed

explanation or justification for an architecture decision

work product representing a system from the perspective of architecture-related concerns

work product establishing the conventions for the construction, interpretation and use of architecture

views

area of interest in a system pertaining to developmental, technological, business, operational,
organizational, political, regulatory, social, or other influences important to one or more of its

TIPS DS S [N (R

context determining the setting and circumstances of developmental, technological, business,
operational, organizational, political, regulatory, social and any other influences upon a system

relation on two or more architecture models
individual, team, organization, or class thereof, having concerns with respect to a system
{one of system concerns}

{a conceptual entity defined by its boundaries}

Copyright © Alar Raabe 2013

64

Classification of Architectural Styles

Boxology — Shaw & Clements F

Style Constituent Parts Control Issues Data Issues Control/Data Interaction
Components |Connectors [Topology |Synchronicity [Topology |Continuity [Isomorphic Shapes
Data Flow Architectural Styles
data
Batch Sequential programs batches linear sequential linear sporadic |yes
data
Data Flow Network transducers |streams arbitrary |asynchronous |arbitrary |continuous |yes
Pipes and Filters filters pipes linear asynchronous |linear continuous |yes
Call and Return Architectural Styles
Main Program /
Subroutines procedures |proc. calls |hierarchical |sequential arbitrary sporadic no
Abstract Data Types |managers static calls |arbitrary sequential arbitrary sporadic |yes
dynamic
Objects managers calls arbitrary |sequential arbitrary |sporadic |yes
Call-based Client
Server programs calls or RPC star synchronous |star sporadic |yes
Layered hierarchical |any hierarchical |sporadic |often
Independent Components Architectural Styles
Event Systems processes signals arbitrary |asynchronous |arbitrary |sporadic |yes
Communicating message any but
Processes processes protocols |arbitrary |sequential arbitrary |sporadic |possibly
Data Centered Architectural Styles
memory,
Repository computations |queries star asynchronous |star sporadic |possibly
memory, direct
Black-Board components |access star asynchronous |star sporadic |no
29.9.13 Copyright © Alar Raabe 2013

Viewtypes and Styles in Architecture Description

« CMU SEI
— The Module

* Decomposition
* Uses

» Generalization
+ Layered

— Component-and-Connector
Datastream

Call-Return

Shared-Data
Publish-Subscribe
Communicating Processes

— Allocation
* Deployment
* Implementation
* Work Assignment

65 29.9.13

o Others
— RUP / Kruchten 4+1

» Logical view (functionality)

Process view (performance, ...)
Deployment view (delivery)
Implementation view (management)
Use-Case view (consolidating)

— Siemens Four Views
« Conceptual
 Module
« Code
« Execution

— C4ISR Framework

» Operational architecture
« System architecture
» Technical Architecture

Copyright © Alar Raabe 2013

(Ontology of) Architectural Design Decisions

« Kinds of Architectural Design
Decisions
— Existence Decisions (ontocrises)
Structural decisions
Behavioral decisions

Ban or non-existence decisions
(anticrises)

— Property Decisions (diacrises)
Constraints
» Design rules
* Guidelines
— Executive Decisions (pericrises)
» Organizational decisions
* Process decisions
Technology decisions
Tool decisions

« Attributes of Architectural Design
Decisions
— Epitome (the Decision itself)
— Rationale (“why”)
— Scope
— State (idea, rejected,

tentative/challenged, decided,
approved)

— Author, Time-Stamp, History

— Categories (usability, security, ...

— Cost
— Risk
66 29.9.13

» Relationships between Architectural
Design Decisions
— Constraints
— Forbids (Excludes)
— Enables
— Subsumes
— Conflicts with (mutually excluding)
— Overrides
— Comprises (is made of, decomposes
into)
— Is bound to (strong)
— Is an alternative to
— Is related to (weak)
— Dependencies

» Relationship with External Artifacts
— Traces to
— Does not comply with

Copyright © Alar Raabe 2013

Questions

» Architecture
— Does every software system has an architecture?

— Which part of the software architecture assures the durability (Quards against
the erosion of system's architecture)?

— Does software architecture description has an architecture?

» Architecture Styles

— Which are good and bad properties of the data-base centric software
architecture style?

— Which architectural style elements of REST assure the scalability of software
system?

— Why asynchronous connections between components are preferred in the
software systems which need high throughput/performance?

» Value of Architecture
— Describe usages of an architecture description in the software engineering?
— How you would calculate the monetary value of an architecture decision?

67 29.9.13 Copyright © Alar Raabe 2013

	Slide 1
	Slide 2
	Content
	Architecture
	Slide 5
	Slide 6
	Design vs. Architecture
	Early Views on Software Architecture
	Software Architecture as Discipline
	Agile and Software Architecture
	Software Architecture Standards
	System, Architecture and Architecture Description
	Architecture Description – set of Views
	Stakeholders & Concerns & Decisions
	Architecture Framework – set of Viewpoints
	Example: Sensor Collection Service
	What is Software Architecture
	Slide 18
	Software Architectural Styles
	Different Architectures – Different Properties
	Slide 21
	Different Levels: Idioms, Patterns, Styles
	What is a Software Architectural Style
	Classification of Architectural Styles
	Classes of Architectural Styles
	Dataflow System
	Dataflow System – Evaluation
	Slide 28
	Data-Centered Systems (Repositories)
	Data-Centered Systems (Repositories) – Evaluation
	Slide 31
	Independent Components (SOA)
	Independent Components (SOA) – Evaluation
	Slide 34
	Compound Style (REST)
	Compound Style (REST) – Evaluation
	Slide 37
	Emerged Architecture – Big Ball of Mud !
	Slide 39
	Slide 40
	Comparing CMU SEI and ISO/IEC 9126
	Quality Attribute Tradeoff Points
	Architecture-Centric Methods
	Slide 44
	Example: SOA Quality Attribute Scenario
	Slide 46
	Slide 47
	Building a Software Architectural Style – REST
	Deriving REST from Constituents
	Slide 50
	Value of Software Architecture
	Measuring Value of Software Architecture
	Real Options for Valuation of Software Architecture
	Slide 54
	What Changes in Business and How Often ?
	Make it Easy to Change – Make it Explicit !
	Slide 57
	Conclusions
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Terms (Glossary)
	Slide 64
	Viewtypes and Styles in Architecture Description
	Architectural Design Decisions
	Slide 67

